首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
应用耦合黑碳源示踪方法的区域大气化学WRF-Chem模式,对中国东部秋季黑碳气溶胶(BC)分布特征进行研究.研究发现中国中东部BC浓度较高(>2μg/m3), BC高值区(>4μg/m3)分布在华北平原、长江三角洲、两湖及四川东部等地区.工业源、居民生活源、交通源是BC的主要排放源,其中工业源会造成近地层BC分布呈点状高值,地形及气象条件也是影响BC累积和传输的重要因素.BC浓度较高的京津冀BC以本地源贡献为主,在不同的风场及大气扩散条件下,外来源对京津冀BC贡献占比的变化较大.BC来源可分为两种情形:一是传输型:地面风速较大,外来源贡献占比达35.1%;二是静稳型:地面风速小,大气条件静稳,以本地贡献(80.1%)为主,来自京津冀周边省份(山东、河南、山西和陕西)的贡献较少(6.9%).本地源与外来源对京津冀BC贡献比呈相反的日变化特征,其中傍晚~早上,本地贡献占比维持在较高水平;午后本地贡献占比减小,外来输送明显增强.当京津冀地区受外来输送影响更大时,日变化特征更明显,外来贡献在午后占比可超过40%.  相似文献   

2.
杭州黑碳气溶胶污染特性及来源研究   总被引:5,自引:0,他引:5  
2011年7月~2012年6月对黑碳气溶胶(BC)、PM2.5、污染气体及气象因子进行同步观测,以评估杭州市BC污染特征、来源分布及对大气能见度的影响.结果表明:杭州市大气BC日均浓度范围为1.3~16.5μg/m3,年均值达到(5.1±2.5)μg/m3.BC呈明显的季节变化趋势,秋冬季高,夏季低.BC也呈典型的日变化趋势,交通高峰期高,下午低,同时与NOx呈较好的相关性,表明城市中BC受到机动车尾气排放的重要影响;而BC/CO低于其他城市则表明生物质燃烧排放可能是杭州BC的另一大重要来源.BC随风速下降呈上升趋势, BC超过10μg/m3的高浓度事件中,风速基本低于2m/s,北-西北-西风对高浓度BC的输送作用明显.观测期间BC的吸收系数为(44.8±23.0)Mm-1,占到总消光比例的10.4%.灰霾和重度灰霾天气下,吸收系数分别为(66.2±30.1),(100.2±49.2)Mm-1,达到非霾天气的2.2和3.4倍, 表明BC吸收消光作用是影响杭州市大气能见度下降和灰霾天气发生的重要因素之一.  相似文献   

3.
采用2010~2013年BC连续在线观测资料,分析天津地区BC的季节分布、潜在来源及其健康效应.结果表明,2010~2013年BC气溶胶浓度平均值为(4.49±3.26)μg/m3,秋季浓度最高,为6.31μg/m3,冬季和夏季次之,春季最低,为2.59μg/m3.各季节BC浓度的日变化特征类似,均呈早晚双峰分布,早间峰值高于晚间,且夜间高于日间.混合层高度和近地层风从垂直和水平两方面影响BC的时空分布,各季节作用强度并不相同.浓度权重轨迹分析表明天津高浓度BC的主要贡献区域为河北、山东、河南等华北平原地区.此外,秋季内蒙古中部和山西北部等西北区域也会影响天津.天津城区各季节成人和儿童的致癌风险(CR)均高于EPA给定的可接受风险水平(10-6),非致癌风险水平较低,秋季因高浓度BC引发的呼吸系统死亡率相对风险为1.118,需要引起高度关注.  相似文献   

4.
采用2010~2013年BC连续在线观测资料,分析天津地区BC的季节分布、潜在来源及其健康效应.结果表明,2010~2013年BC气溶胶浓度平均值为(4.49±3.26)μg/m3,秋季浓度最高,为6.31μg/m3,冬季和夏季次之,春季最低,为2.59μg/m3.各季节BC浓度的日变化特征类似,均呈早晚双峰分布,早间峰值高于晚间,且夜间高于日间.混合层高度和近地层风从垂直和水平两方面影响BC的时空分布,各季节作用强度并不相同.浓度权重轨迹分析表明天津高浓度BC的主要贡献区域为河北、山东、河南等华北平原地区.此外,秋季内蒙古中部和山西北部等西北区域也会影响天津.天津城区各季节成人和儿童的致癌风险(CR)均高于EPA给定的可接受风险水平(10-6),非致癌风险水平较低,秋季因高浓度BC引发的呼吸系统死亡率相对风险为1.118,需要引起高度关注.  相似文献   

5.
基于2020年南岭背景高山地区的3个典型云事件,利用地用逆流虚拟撞击器采集云中颗粒物,结合单颗粒黑碳光度计和激光雾滴谱仪分析黑碳浓度及云参数特征,探讨黑碳云内清除率及其影响因素.结果表明:进入云内的黑碳约占整体的20%,而云中含黑碳云滴的占比(4.67%)则少于含黑碳间隙颗粒的占比(15.31%);黑碳的分粒径质量清除率和数量清除率接近,变化范围均为28%~59%;高液态含水量和云滴数浓度有利于黑碳云内清除率的增加,而黑碳云内清除率会随黑碳总浓度的增加而降低,各因素对于黑碳云内清除的影响由大到小为:云滴数浓度>液态含水量>总黑碳浓度.  相似文献   

6.
祁连山空中云水资源开发利用效益预测与评估   总被引:4,自引:0,他引:4  
利用社会效益、经济效益和生态效益3 个方面25 项指标, 建立了空中云水资源开发利用综 合效益的评价体系。同时对祁连山区人工增雨对径流的影响作了预估, 在此基础上, 对祁连山云水 资源开发利用后山前走廊各流域水资源状况及社会经济状况进行了合理的预测。最后, 选用其中 11 项指标, 并运用层次分析法对祁连山空中云水资源开发利用效益进行了评价。结果表明: 祁连山 空中云水资源开发利用对山前走廊的社会、经济、生态等效益均显著增加, 祁连山区通过人工增雨, 降水增加10%时, 河西地区综合效益将提高5.3%, 降水增加20%时, 综合效益提高12.5%。  相似文献   

7.
邯郸市黑碳气溶胶浓度变化及影响因素分析   总被引:2,自引:0,他引:2  
根据2013年3月—2017年2月邯郸市河北工程大学站点的黑碳气溶胶、PM2.5、大气污染物的小时浓度数据及常规气象数据,对邯郸市黑碳浓度的时间变化特征及影响因素进行分析.结果表明,4年来邯郸市黑碳浓度呈逐年下降的趋势:与2013年相比,2014—2016年黑碳气溶胶浓度分别下降了5%、16%、24%;邯郸市黑碳气溶胶浓度的季节变化趋势基本一致且季节变化特征明显,冬季黑碳气溶胶浓度最高,秋季次之,春夏两季最低,其中,冬季平均浓度分别是春、夏、秋季的2.07、2.77、1.49倍;其日变化呈单峰单谷状,且4个季节的日变化趋势相同,峰值均出现在6:00—8:00,谷值均出现在14:00—15:00.黑碳与PM2.5的相关系数r为0.860,相关性显著,说明黑碳气溶胶和PM2.5的来源大部分是一致的;风速和风向对黑碳气溶胶浓度也有影响,黑碳气溶胶浓度随风速增加而降低;4个季节高频风向为南-西南方向,且该风向下黑碳气溶胶浓度均较高,冬季南-西南风向下的黑碳浓度最高;应用后向轨迹对研究时段内4段重污染期间的气流轨迹进行模拟发现,邯郸市黑碳气溶胶浓度较高的主要原因是本地源排放和近距离传输,远距离传输贡献较小.  相似文献   

8.
利用阿克达拉大气本底站2011~2017年黑碳气溶胶(BC)逐小时质量浓度资料和同期气象数据,采用后向轨迹聚类分析、潜在来源贡献函数法(PSCF)和浓度权重轨迹分析法(CWT),研究了阿克达拉站BC不同时间尺度浓度特征和潜在源区.结果表明:阿克达拉站2011~2017年BC呈波动下降趋势,BC清洁程度较高;BC浓度呈春冬高,夏秋低的季节变化特征,春季(398.85±189.35) ng/m3>冬季(389.89±105.94) ng/m3>夏季(272.07±90.07) ng/m3>秋季(269.52±68.07) ng/m3,自然因素为BC浓度变化的主要原因;日变化特征表现为白天低、夜间高,基本呈单峰分布;阿克达拉站BC潜在源随季节变化差异明显,后向轨迹,WPSCF和WCWT分析都表明,春季潜在源集中于俄罗斯南部与新疆交界处的阿尔泰山北麓,秋季潜在源为新疆北疆经济带,冬季BC多受境外排放源影响.BC污染控制需要区域环境合作,实现联防联治,尤其是加强跨境污染源监测工作.  相似文献   

9.
利用2016年中国气象局设于长江三角洲地区的上海崇明东滩(DT).上海浦东(PD),安徽寿县(SX),浙江临安(LA)和浙江洪家(HJ)5个站点的BC观测资料,结合气象资料和污染物数据等,对该地区BC特征和来源展开研究.上海东滩,上海浦东,安徽寿县,浙江临安和浙江洪家5个站点BC年平均浓度分别为(1834±1713),(2410±1537),(2823±1759),(2651±1518)和(2544±1399)ng/m3.上海东滩浓度较低,其他站点较为接近.各站点BC都有明显的季节变化.上海崇明东滩冬季BC浓度高于其他季节.其他4个站点都是冬季 > 春季 > 秋季 > 夏季.上海东滩四季BC日变化不明显,而其他站点四季BC浓度日变化的高值都出现在交通高峰期(06:00~09:00,18:00~21:00).上海浦东,安徽寿县,浙江临安和浙江洪家BC主要来源于机动车尾气排放和燃煤.所有站点风速较低(风速<3m/s),BC受风速影响显著,风速越大,BC浓度越低.相对湿度在50~60之间,BC平均浓度最高.潜在源区贡献(PSCF)的分析结果显示,冬夏两季长江三角洲5个站点BC潜在源区主要集中在江苏,安徽和浙江等地.  相似文献   

10.
苏州城区能见度与颗粒物浓度和气象要素的相关分析   总被引:9,自引:3,他引:6  
利用苏州市2009年9月─2010年5月的颗粒物(包括黑碳,PM2.5和PM10)质量浓度、能见度、相对湿度、风速、风向、气温等观测资料,分析了苏州城区能见度与颗粒物质量浓度及气象要素的相关关系.结果表明:ρ(黑碳),ρ(PM2.5)和ρ(PM10)与能见度的r(相关系数)分别为-0.465,-0.359和-0.238,这3种颗粒物中,能见度与ρ(黑碳)的相关性最显著.当相对湿度≤60%时,ρ(黑碳),ρ(PM2.5)和ρ(PM10)与能见度的r分别为-0.675,-0.411和-0.364.相对湿度较低时,颗粒物与能见度相关性较好.能见度与温度、风速的r分别为0.132和0.188,与相对湿度的r为-0.632.用颗粒物质量浓度和气象要素建立的能见度多元线性回归模型效果不好,在该模型基础上用ρ(黑碳),ρ(PM10)和相对湿度建立了能见度的多元二次回归模型,R(复相关系数)达到0.865,R2(复决定系数)达到0.749.   相似文献   

11.
辽宁地区大气黑碳气溶胶质量浓度在线连续观测   总被引:4,自引:1,他引:3  
利用2008年3月—2009年2月辽宁沈阳、大连、鞍山、抚顺和本溪ρ(黑碳)观测资料,分析了其变化特征及重要影响因子. 结果表明,5个城市小时ρ(黑碳)的变幅较大,最小值出现在抚顺秋季的2008年9月23日00:00,ρ(黑碳)为0.14 μg/m3,最大值出现在本溪冬季的2008年11月11日08:00,ρ(黑碳)为64.52 μg/m3;本溪ρ(黑碳)日均值最高,为6.87 μg/m3,其次是沈阳、鞍山和抚顺,大连的ρ(黑碳)日均值最小,为3.18 μg/m3;ρ(黑碳)日变化有明显的峰值和谷值,最高值一般出现在06:00─09:00和17:00─19:00,低值出现在02:00─04:00和12:00─15:00;风速对ρ(黑碳)有重要影响,当风速<3.5 m/s时,ρ(黑碳)随风速增大而减小,当风速>3.5 m/s时,风速对ρ(黑碳)的影响不大;后向风轨迹较好地反映污染物在不同城市区域间的传输特征,在冬季沈阳以上风区域北部影响为主;ρ(黑碳)日均值变化和大气低层垂直温度梯度变化有较好的对应关系.   相似文献   

12.
黑碳已经成为仅次于二氧化碳的气候影响因子,黑碳的排放问题越来越受到人们的关注。主要探讨了黑碳对气候的影响机理,并论述了黑碳主要是通过辐射强迫对全球气候产生影响,其中辐射强迫包括对可见光和部分红外光强吸附而造成的直接辐射强迫和通过云凝结核和冰雪反射影响等造成的间接辐射强迫。另外,还讨论了中国黑碳的排放问题,并且针对不同类别的排放源,提出了一些可行的减排建议。  相似文献   

13.
柴油车的黑碳排放对空气质量和气候变化有重要影响,但我国柴油车黑碳排放清单编制仍有较大局限性. 为进一步提高柴油车黑碳排放清单编制精度,采用整车转毂台架和热光折射的方法研究不同排放标准、行驶工况和负载状况对重型柴油货车黑碳排放的影响. 结果表明:我国排放标准升级对重型柴油货车的黑碳排放有重要影响,从国Ⅰ、国Ⅱ排放标准升级到国Ⅲ、国Ⅳ和国Ⅴ排放标准,黑碳在颗粒物中的占比由41%左右逐步提至72%左右. 行驶工况对重型柴油货车的黑碳排放也有一定影响,车辆在C-WTVC (中国重型商用车燃料消耗量测试工况)下的黑碳排放占比较VECC (重型车典型道路行驶工况)下高5%~10%. 与半载状态相比,重型柴油货车在满载状态下黑碳排放占比更高,国Ⅲ、国Ⅳ重型柴油货车满载状态下黑碳排放占比较半载状态高7%~8%,国Ⅱ重型柴油货车满载状态下黑碳排放占比较半载状态高15%左右. 研究显示,柴油货车黑碳排放清单编制要综合考虑排放标准、驾驶特征、负荷状况等对黑碳排放的影响,不宜使用固定系数利用颗粒物排放因子外推黑碳排放因子.   相似文献   

14.
黄智浦  牛振川  马皓  王森 《环境科学研究》2020,33(11):2605-2612
黑碳(black carbon,BC)影响着全球辐射平衡、大气环境和人体健康,而降水是大气中黑碳的主要去除方式.简述了降水中黑碳的分析方法,重点论述了国内外降水中黑碳的分布特征和对黑碳的去除效率,以及模型和碳同位素示踪技术在识别黑碳来源的应用.结果表明:①单颗粒黑碳光度计因其检测限低、分析速度较快等优点在分析液相介质黑碳中应用较多.②降水中黑碳含量在空间上呈现较大差异,中国降水中黑碳含量较两极地区高2~3个数量级,越靠近两极地区,降水中黑碳含量越低,且工业革命后冰芯中黑碳含量有所增加.由于不同地区工业类型和化石燃料燃烧效率的差异,中国降水中黑碳含量大于东亚其他地区及欧洲地区.长时间(>8 h)降水对黑碳的去除效果较好.③混合单粒子拉格朗日积分轨迹模型、正定矩阵因子分解模型和碳同位素示踪技术相结合能更好地分析降水中黑碳的来源.研究显示,我国降水中黑碳含量较高、污染较重,但对城市降水中黑碳污染的关注还不足,未来应加强对不同地区城市降水中黑碳的观测,充分利用分析模型和碳同位素示踪技术解析降水中黑碳的来源.   相似文献   

15.
为了加强对长江三角洲地区大气污染分布特征和输送规律的认识,利用移动车载设备开展了不定期的走航观测,重点研究了2016-2018年冬季灰霾污染和春季光化学污染条件下长江三角洲地区的大气污染特征.结果表明,走航观测期间长江三角洲地区PM2.5日均浓度为60~122 μg/m3,东部的常州、无锡一带,西部的合肥、芜湖地区,北部蚌埠、滁州一带,南部湖州、杭州地区的PM2.5浓度较高,比其他地区高出20%~40%.O3日均浓度水平为9~52 μg/m3,苏州、盐城、宣城与湖州地区浓度相对较高.运用FLEXPART_WRF模式,结合PM2.5排放清单,分析了走航观测期间长江三角洲地区及沿线城市PM2.5的潜在来源.结果发现,东风条件下,南通及上海地区为PM2.5的潜在源区,北风条件下,连云港、盐城等地区贡献较大.运用FLEXPART前向轨迹计算模块,对一次污染个例过程进行了模拟,并利用走航观测结果进行了验证,发现模拟结果与走航观测结果的相关系数达到0.9.可见,长江三角洲地区存在区域性的PM2.5和O3污染,走航观测结合轨迹分析是追踪污染气团输送的有效手段.  相似文献   

16.
甘肃省1960—2008年潜在蒸散量时空变化及其影响因子   总被引:4,自引:1,他引:3  
基于甘肃省27个气象站点1960—2008年逐日气温、 降水、 风速、 日照时数、 太阳总辐射和相对湿度数据,应用Penman-Monteith模型和Kriging插值法,分析其潜在蒸散量的时空变化及其影响因子。结果表明:近49 a来,甘肃省不同气候区年均潜在蒸散量变化除河西走廊外均呈上升趋势,并以甘南高寒湿润区上升最显著,变化率为10.36 mm/10 a(α=0.001);在四季变化中,夏季最大,春秋次之,冬季最小,各气候区变化趋势有别。潜在蒸散量空间差异显著,表现为自西北向东南递减,且甘南高原最小,河西暖温带最大。河西、 陇南、 陇中、 甘南及祁连山区年均潜在蒸散量分别与平均风速、 太阳总辐射和最高气温正相关最显著,典型站点与之一致,且辐射项主要受太阳辐射影响,动力项主要受风速影响。  相似文献   

17.
本溪大气黑碳气溶胶浓度的观测研究   总被引:1,自引:0,他引:1  
对2008年3月至2009年2月本溪黑碳气溶胶浓度观测资料进行了研究分析.结果表明,本溪黑碳平均浓度值为6.877 μg/m3,日平均浓度变化范围为0.592~20.577 μg/m3,每小时平均浓度最大值达64.518 μg/m3;黑碳浓度具有明最的季节变化,夏季的平均浓度最低,最高值出现在冬季的1月份,这与冬季取暖...  相似文献   

18.
林田  方引  陈颖军  胡利民  郭志刚  张干 《环境科学》2012,33(7):2335-2340
本文采用化学热氧化法测定了25个东海内陆架表层沉积物中黑碳的含量,探讨了沉积物中黑碳与总有机碳、粒度以及持久性有机污染物之间的关系.结果表明,东海内陆架表层沉积物中黑碳的含量范围为0.21~0.88 mg.g-1.沉积物中黑碳和总有机碳之间没有显著的相关性,表明两者具有不同的来源.区域内沉积物在粒度上有明显的空间分异,黑碳的空间差异则较小,表明黑碳的沉积过程受颗粒物分选过程的影响较小.沉积物中多环芳烃和滴滴涕的含量与黑碳无显著的相关性,可能与东海内陆架环境中强烈的水动力过程和持久性有机污染物来源的复杂性有关.  相似文献   

19.
为了揭示柳州城区春冬季PM2.5的来源及其潜在源区分布和贡献,利用2018年24h自动监测数据和气象数据对柳州市大气污染物浓度变化特征进行了分析,并且使用后向轨迹模型(HYSPLIT)对春冬季柳州市PM2.5逐日72h气流后向轨迹和前向轨迹进行聚类分析,同时结合潜在源贡献因子分析法(WPSCF)和轨迹浓度权重法(WCWT)对其潜在源区和浓度贡献进行了分析.结果显示,(1)在研究期内,不利的主导风向和工业区布局导致研究区PM2.5在春冬季污染较严重,且工业源和交通源是其主要本地来源;(2)春冬季PM2.5高值主要来源于西北和东南方向,其中,西北向PM2.5主要来源于本地排放,且浓度在空间上呈现西高东低的趋势;(3)春季后向轨迹PM2.5浓度整体大于冬季,春冬季中对柳州市PM2.5影响最大轨迹均来自东部的短距离输送,而来自西北的气流轨迹输对PM2.5贡献最低.春冬季柳州市大气PM2.5通过气流传输对贵州地区大气环境有较大影响;(4)春季,柳州市PM2.5的主要潜在源区分布在广西东南部、广东中西部、南海沿岸海域、湖南中部、江西西北部、湖北东部及安徽西北部;冬季,主要分布在广西东南部、广东西南部和南海沿岸海域.  相似文献   

20.
中国西北地区近47a日照时数的气候变化特征   总被引:15,自引:1,他引:14  
利用中国西北地区135个测站1961—2007年1—12月日照时数资料,采用EOF、REOF、趋势分析、Mann-Kendall分析、相关分析等方法,分析了47 a来西北地区日照时数的时空分布特征及其变化规律。结果表明:西北地区的日照时数从东南向西北减少,甘青新交界区是西北地区日照的高值区。冬季日照最少,夏季最多,春季多于秋季。西北地区大部分地方日照时数显著减少,全区平均减少速率为19.92 h/10 a,1980年发生突变。新疆西南部和青海南部日照时灵敏有明显增多趋势,甘南—陇中—宁南—陇东—陕中日照时数不显著增多。将西北地区日照时数分为7个不同类型区域:即西北地区东部区、新疆中北部区、新疆西南区、海西北高原区、祁连山区、青南高原和河西走廊区。西北地区东部和新疆中北部的日照时数为单峰型,河西走廊、祁连山区、新疆西南部的日照时数呈双峰型分布,青海高原的日照时数呈三峰型分布。在气候变暖的背景下,西北地区相对湿度增加,云量增多,是造成大部分地方日照减少的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号