共查询到20条相似文献,搜索用时 0 毫秒
1.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施. 相似文献
2.
大气PM_(2.5)中很多金属元素危害人体健康,且具有源示踪性,因此,开展PM_(2.5)中金属在线监测对污染来源分析和大气污染防治有着重要意义.本研究于2017年4—5月使用美国Cooper环境空气多金属在线监测仪对深圳城市大气PM_(2.5)中金属元素进行连续观测.与同步离线采样测量的金属数据进行比对表明,10种元素(K、Zn、Cu、Mn、Fe、V、Ni、Ti、Pb、Cr)呈现良好的相关性,因而用于后续分析.观测期间大气PM_(2.5)的平均浓度24.8μg·m~(-3),其中10种金属元素总浓度为0.72μg·m~(-3),占比2.9%.Mn、Fe、Cu、Zn和Ti的浓度日变化显示了日间高、夜间低的特征,表明受到本地人为源的显著影响;而K、Pb、Cr浓度日变化无明显波动,说明受区域传输影响较大;Ni与V日变化趋势一致,主要来源为船舶排放.主成分因子分析结果表明,观测期间PM_(2.5)中金属污染来源主要为交通和扬尘源、工业排放/废物燃烧和船舶污染,方差贡献依次为54.3%、19.8%和8.8%. 相似文献
3.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响. 相似文献
4.
天津市春季道路降尘PM2.5和PM10中的元素特征 总被引:1,自引:0,他引:1
为探究天津市春季道路降尘中元素污染特征及来源,于2015年春季采集了天津市道路降尘样品,通过再悬浮得到PM_(2.5)和PM_(10)滤膜样品,继而测定了滤膜样品中16种元素的含量,通过非参数检验、分歧系数法、富集因子法等研究了道路降尘中元素的污染特征、来源和成分谱的相似性.结果表明,天津市春季道路降尘PM_(2.5)和PM_(10)质量分数平均值在1%~20%之间的元素从大到小依次为:SiAlCaFeMgKNa;PM_(10)和PM_(2.5)中元素成分谱分歧系数为0.06,表明两者元素成分谱很相似;PM_(10)和PM_(2.5)中,元素Cd和Cr强烈富集,Zn、Cu、Pb和As显著富集;道路降尘PM_(2.5)和PM_(10)中元素主要来源于土壤风沙尘、建筑尘、交通尘(汽车尾气的排放、轮胎磨损和刹车片磨损)和煤烟尘. 相似文献
5.
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著. 相似文献
6.
为探究临沂市PM2.5和PM10中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM2.5和PM10进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM2.5和PM10中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM2.5中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧... 相似文献
7.
2005年四季在北京市不同功能区9个采样点采集大气PM10和PM2.5样品,并对其中有机物污染水平、分布特征及不同功能区PM10和PM2.5中有机物的相关性进行了探讨.结果表明,市区PM10和PM2.5中有机物年均值分别为41.39 μg/m3和34.84 μg/m3,是对照区十三陵的1.44倍和1.26倍;冬季有机物污染最严重,分别为春季的1.15、 1.82倍,秋季的2.06、 2.26倍,夏季的4.53、 6.26倍.不同季节PM2.5与PM10中EOM的比值超过0.60, 并呈现一定季节差异.各功能区有机污染表现出工业区(商业区)>居民区(交通区、对照区)的变化趋势,且不同功能区PM2.5中EOM对PM10中EOM的影响程度各异.有机组分的年均值有非烃>沥青质>芳烃>饱和烃的变化规律,而污染源的季节性排放是造成有机物组分季节变化的主要原因. 相似文献
8.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系. 相似文献
9.
基于2013—2015年南昌市9个空气环境监测点的连续数据,分析了空气PM_(2.5)、PM_(10)质量浓度(以下简称浓度)的时空变异规律,并以景观格局指数为定量指标,研究了监测点的两种颗粒物浓度与其周边500 m半径、1000 m半径缓冲区的土地利用状况的关系.结果表明:(1)南昌市3年来PM_(2.5)和PM_(10)浓度逐年显著降低.(2)通过聚类分析,9个监测站依据颗粒物污染可分为4大类,表现出一致的城乡梯度差异.(3)在斑块类型水平上,PM_(2.5)和PM_(10)浓度与500、1000 m半径缓冲区的C-PLAND(建筑用地覆盖率)、C-SHDI(建筑用地多样性指数)显著正相关,与1000m缓冲区的F-ED(林地边界密度)显著正相关;与F-PLAND(林地覆盖率)、C-Fi(建筑用地分离度指数)、F-MPS(林地平均斑块面积)显著负相关.在景观水平上,PM_(2.5)和PM_(10)浓度在500 m缓冲区与LPI(最大斑块所占景观比例)显著负相关;与1000 m缓冲区的MPS(平均斑块面积)显著负相关.景观格局指数直接反映土地利用状况,它与PM_(2.5)和PM_(10)浓度的相关性,表现出生态学中典型的"源汇景观"关系. 相似文献
10.
基于AOD数据与GWR模型的2016年新疆地区PM2.5和PM10时空分布特征 总被引:1,自引:0,他引:1
PM2.5与PM10的时空分布特征及其相关性是大气颗粒物研究的主要内容,传统方法是基于监测站点数据进行分析,难以揭示PM2.5与PM10时空分布的区域特征.为此,本文利用地理加权回归模型估算了2016年新疆地区PM2.5与PM10的月均浓度,在此基础上对区域尺度的PM2.5与PM10浓度特征进行分析.结果表明:地理加权回归相较最小二乘回归的拟合精度更高,PM2.5和PM10的决定系数分别为0.93和0.96,且误差较小;PM2.5和PM10年均浓度分别为70.88 μg·m-3和194.53 μg·m-3,说明大气颗粒物污染严重,且空间分布呈西南高、东北低的特征;PM2.5和PM10季节浓度均为春季最高,夏季最低;PM2.5月均浓度2月最高,9月最低,PM10月均浓度3月最高,8月最低;PM2.5与PM10年均浓度的相关系数r为0.95,相关性较高;PM2.5/PM10冬季最高为51%,其余季节小于50%,说明冬季PM2.5对大气颗粒物污染贡献率较高,其余季节则以可吸入颗粒物中的粗颗粒贡献为主. 相似文献
11.
降水和风对大气PM2.5、PM10的清除作用分析 总被引:2,自引:0,他引:2
对合肥2015—2017年的降水、风和PM_(2.5)、PM_(10)浓度观测数据统计研究发现,降水对PM_(2.5)、PM_(10)有一定的清除作用,尤其在秋冬季节.秋冬季节小雨、中雨分别导致PM_(2.5)和PM_(10)浓度降低23.1%、40.4%和32.0%、63.7%.雨日PM_(2.5)/PM_(10)比例上升8.4%,表明降水对PM_(10)清除作用更显著.降水前后PM_(2.5)浓度变化与降水前PM_(2.5)浓度、降水强度、降水时长密切相关.当降水强度大于4 mm·h~(-1)或PM_(2.5)初始浓度高于115μg·m~(-3)时,降水对PM_(2.5)产生明显清除作用;而降水强度小于1 mm·h~(-1)或PM_(2.5)初始浓度低于115μg·m~(-3)时由于吸湿增长作用极易造成PM_(2.5)浓度反弹升高;且持续3 h以上雨强介于1~4 mm·h~(-1)的降水也对PM_(2.5)产生清除作用.降水前后PM_(10)浓度变化与初始浓度密切相关,而与雨强相关性较弱.当PM_(10)初始浓度大于50μg·m~(-3),降水就对PM_(10)产生明显清除作用,且PM_(10)初始浓度越高,降水后PM_(10)浓度下降越多.风速大于2 m·s~(-1)可显著降低PM_(2.5)浓度,因此,当风速大于4 m·s~(-1)时合肥较少出现中度及以上污染,但易造成地面起尘,使PM_(10)浓度不降反升.合肥冬季严重污染主要出现在西北风向,夏季中度以上污染天气较少,主要出现在风速低于3 m·s~(-1)的东南风向. 相似文献
12.
基于2019年三亚城区站点PM2.5中水溶性离子在线观测数据,分析了水溶性离子的质量浓度水平、不同时间尺度和不同PM2.5浓度下的特征,探讨了气象因子对离子组分的影响,通过主成分分析(PCA)解析来源.结果表明:2019年三亚城区总水溶性离子(TWSI)质量浓度为8.173 μg·m-3,占ρ(PM2.5)的58.4%,各离子质量浓度大小依次为:ρ(SO42-) > ρ(NO3-) > ρ(K+) > ρ(NH4+) > ρ(Na+) > ρ(Cl-) > ρ(Ca2+) > ρ(F-) > ρ(Mg2+) > ρ(NO2-),其中二次离子SO42-、NO3-、NH4+(SNA)和K+为主要离子组分,占总水溶性离子的80.0%,海盐粒子Na+及Cl-之和占比为14.7%,且与风速呈显著正相关;TWSI季节浓度变化特征明显,秋季最高,春冬季次之,夏季最低,主要与秋冬季风速较大、主导风向转为东北风,易受外来传输有关;SO42-在各个季节均是浓度及占比最高的离子,硫氧化率(SOR)的日均值均大于0.1,存在显著的SO2向SO42-转化的过程;PCA分析结果表明三亚城区水溶性离子主要受海洋源、二次源及生物质燃烧源的影响. 相似文献
13.
廊坊市秋季环境空气中颗粒物组分昼夜变化特征研究 总被引:3,自引:0,他引:3
为研究廊坊市区秋季环境空气中颗粒物浓度及其组分昼夜变化特征,于2015年9月12—21日在廊坊市进行PM_(2.5)和PM_(10)采样,并对采集的样品无机元素、水溶性离子和碳组分(OC和EC)分析.结果表明,夜间PM_(2.5)和PM_(10)浓度比白天高,且下半夜出现大幅上升.PM_(2.5)/PM_(10)比值为0.49~0.62,下半夜最高.碳组分、Ba、Cr、Cl~-、NO_3~-、SO_4~(2-)、NH_4~+等主要富集在PM_(2.5)中,而Ca、Al、Si、Mg~(2+)和Ca~(2+)等主要富集在PM_(10)中.通过昼夜颗粒物组分对比发现,夜间EC、Cu、Zn、Cr、Pb、Cl~-、NO_3~-和NH_4~+等浓度明显上升.同时,下半夜OC/EC比值明显变小,Cl-、NO_3~-和NH_4~+浓度明显增大,同时段CO和NO_2浓度上升,而SO_2浓度变化平缓.以上表明采样期间廊坊夜间可能存在移动源和部分工业污染源排放. 相似文献
14.
基于虚拟撞击原理的固定源PM10/PM2.5采样器的研制 总被引:1,自引:3,他引:1
目前我国尚无固定源PM2.5采样标准方法,现有商业化的固定源PM2.5采样器在使用中存在明显不足,因此本研究开发了一种固定源PM10/PM2.5双级虚拟撞击采样器.经实验室标定,该采样器切割效率曲线优于国际标准ISO 7708:1995对采样器的规定,采样器横截面直径为74 mm,满足我国固定源采样口尺寸要求.采样器既可以安装滤膜,也可以安装滤筒,适用于不同浓度的烟尘采样.虚拟撞击器的切割点与次流所占比值呈负相关,比值减小时,切割点增大.为降低颗粒物损失,虚拟撞击器喷嘴距收口的距离至少应为喷嘴直径的1.5~2倍. 相似文献
15.
为研究天津市春季道路扬尘PM_(2.5)和PM_(10)中碳组分特征及来源,于2015年4月用样方法采集天津市道路扬尘样品,利用再悬浮采样器将样品悬浮到滤膜上,经热光碳分析仪测定有机碳(OC)和元素碳(EC),利用非参数检验、OC/EC比值分析、相关分析及聚类分析对其污染特征和来源进行探讨.结果表明,PM_(2.5)中ω(TC)为4. 89%(次干道)~18. 83%(快速路),ω(OC)为3. 57%(次干道)~15. 39%(快速路),ω(EC)为1. 32%(次干道)~3. 44%(快速路); PM_(10)中ω(TC)为8. 14%(次干道)~19. 71%(快速路),ω(OC)为5. 91%(次干道)~16. 28%(快速路),ω(EC)为1. 96%(主干道)~3. 43%(快速路);快速路中各碳组分质量分数均较高,次干道中各碳组分质量分数均较低,可能是由于快速路中车流量较大,机动车尾气排放量较大,而次干道车流量较小;各类型道路中ω(OC)明显大于ω(EC),ω(EC)在不同道路类型中差异不大;两相关样本非参数检验表明,各碳组分质量分数在PM_(2.5)和PM_(10)间均无显著性差异;相关性分析表明道路扬尘中OC、EC来源大致相同.通过OC/EC比值分析及聚类分析可知,天津市春季道路扬尘中碳组分主要来源于燃煤、机动车尾气以及生物质燃烧. 相似文献
16.
采用大流量气溶胶采样器采集了重庆市万州城区2013年夏季和冬季大气中PM_(2.5)样品,并运用气相色谱-质谱联用技术对PM_(2.5)中22种(C12~C33)正构烷烃的含量进行了测定,进而对万州城区PM_(2.5)中正构烷烃的污染特征及来源进行了分析.结果表明,万州城区夏、冬季大气PM_(2.5)中均检测出C12~C33正构烷烃,主峰碳均为C29和C31.夏、冬季PM_(2.5)中正构烷烃日均总浓度分别为158.70 ng·m-3和257.20 ng·m-3,碳优势指数CPI分别为1.63和1.82,CPI1分别为0.61和0.67,CPI2分别为1.83和1.96,植物蜡参数Wax C平均值分别为53.44%和55.53%.万州城区大气细颗粒物中n-alkanes受到来源于陆源高等植物蜡的排放等生物源及化石燃料燃烧等人为源的共同影响,且生物源的影响较大. 相似文献
17.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关. 相似文献
18.
Deping Li Jianguo Liu Jiaoshi Zhang Huaqiao Gui Peng Du Tongzhu Yu Jie Wang Yihuai Lu Wenqing Liu Yin Cheng 《环境科学学报(英文版)》2017,29(6):214-229
Trajectory clustering, potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) methods were applied to investigate the transport pathways and identify potential sources of PM2.5 and PM10 in different seasons from June 2014 to May 2015 in Beijing. The cluster analyses showed that Beijing was affected by trajectories from the south and southeast in summer and autumn. In winter and spring, Beijing was not only affected by the trajectories from the south and southeast, but was also affected by trajectories from the north and northwest. In addition, the analyses of the pressure profile of backward trajectories showed that backward trajectories, which have important influence on Beijing, were mainly distributed above 970 hPa in summer and autumn and below 950 hPa in spring and winter. This indicates that PM2.5 and PM10 were strongly affected by the near surface air masses in summer and autumn and by high altitude air masses in winter and spring. Results of PSCF and CWT analyses showed that the largest potential source areas were identified in spring, followed by winter and autumn, then summer. In addition, potential source regions of PM10 were similar to those of PM2.5. There were a clear seasonal and spatial variation of the potential source areas of Beijing and the airflow in the horizontal and vertical directions. Therefore, more effective regional emission reduction measures in Beijing''s surrounding provinces should be implemented to reduce emissions of regional sources in different seasons. 相似文献
19.
为探讨重庆主城区4个季节大气PM10和PM2.5的主要来源,于2012年2—12月在重庆主城区的工业区、文教区和居住区5个环境监测点同步采集PM10及PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳含量及其分布特征. 采集了重庆主城区土壤尘、建筑水泥尘、扬尘、移动源(包括机动车、施工机械及船舶)、工业源(包括固定燃烧源及工业工艺过程源)、生物质燃烧源及餐饮源等7类污染源,建立了重庆市本地化的污染源成分谱库. 利用CMB(化学质量平衡)受体模型及二重源解析技术分析了PM10及PM2.5的来源. 结果表明:重庆主城区大气中ρ(PM10)及ρ(PM2.5)的年均值分别为153.2和113.1 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准限值2倍以上. 大气PM10的主要来源为扬尘、二次粒子和移动源(贡献率分别为23.9%、23.5%和23.4%),大气PM2.5主要来源于二次粒子和移动源(贡献率分别为30.1%和27.9%).PM10和PM2.5的主要源类贡献率差别不大,表明研究区域内大气颗粒物污染控制应采取多源控制原则. 大气PM10来源的季节性变化特征表现为春季和秋季主要以扬尘为主、夏季和冬季主要以二次粒子为主. 相似文献
20.
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源. 相似文献