共查询到20条相似文献,搜索用时 15 毫秒
1.
石家庄市采暖季PM2.5碳组分昼夜污染特征及来源分析 总被引:1,自引:0,他引:1
为探究2017年石家庄市采暖季昼夜PM2.5中碳组分的污染及来源特征,选取2017年11月30日-2018年1月22日时间段分别采集石家庄白天(8:00-20:00)、夜晚(20:00-翌日8:00)的PM2.5样品,分析PM2.5组分中OC和EC昼夜间的浓度变化特征、来源特性,SOC的估算及影响因素,并对石家庄市碳质气溶胶进行源解析和区域传输分析.结果表明,①采样期间白天PM2.5、OC和EC的平均质量浓度分别为(110.6±71.6)、(39.9±20.4)和(9.3±3.6)μg·m-3,夜间平均质量浓度分别为(128.5±75.3)、(64.7±36.5)和(13.6±6.0)μg·m-3,PM2.5、OC和EC质量浓度均呈现出夜间质量浓度高于白天的特征.②燃煤和机动车尾气排放在增加了一次有机碳(POC)和元素碳(EC)的本底质量浓度的同时,产生的CO、NO2、SO2等气体污染物又促进了光化学反应,两者协同作用下促进了SOC质量浓度的生成和积累.根据估算,SOC、SOC/OC值在夜间高于白天,白天较强的太阳辐射和光化学活性是SOC转化的主导因素,夜间气态有机前体物浓度是SOC转化的主导因素.③采样期间昼夜间OC、EC的相关性较好,其来源具有较好的同源性.大气PM2.5碳质气溶胶主要来自燃煤、汽油车和柴油车尾气排放混合源,夜间柴油车污染源对碳质气溶胶的贡献率较白天更为明显.④后向轨迹结果表明,石家庄市严重污染期间颗粒污染物浓度变化主要受到低空东北方向气团的影响,PM2.5以及OC、EC质量浓度的变化和周边地区的污染物输送有关. 相似文献
2.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制. 相似文献
3.
PM_(2.5)是大气的重要污染物之一,其成分复杂,为研究PM_(2.5)的污染特征及来源,于2016年3月采集南京北郊地区大气中的PM_(2.5),利用Dinoex ICS-3000和ICS-2000型离子色谱和DRI Model 2001A热/光碳分析仪分别测定了PM_(2.5)中的阴阳离子和碳质组分,利用元素分析仪-同位素质谱仪测定大气PM_(2.5)中的总碳同位素(δ~(13)CTC)组成特征.结果表明,2016年3月期间南京北郊地区PM_(2.5)污染严重,平均浓度达(106.16±48.70)μg·m~(-3),且88%观测天中存在明显的二次有机污染,SOC平均浓度为(3.58±2.78)μg·m~(-3),且在晴天条件下高浓度的二次有机碳(SOC)与紫外线作用下的O_3具有较强的相关性.大气PM_(2.5)中δ~(13)CTC值范围是-26.56‰~-23.75‰,平均值为(-25.47‰±0.63‰),结合化学组分的三相聚类分析结果可知,大气PM_(2.5)主要来源于燃煤过程、机动车排放,此外还受地质源和生物质燃烧源的影响. 相似文献
4.
为研究盘锦市秋冬季节大气PM_(2.5)中碳组分的污染特征和来源,于2016年10月和2017年1月采集盘锦市3个点位PM_(2.5)样品,通过OC/EC比值法,EC示踪法以及主成分分析法对PM_(2.5)中碳组分进行污染特征分析及来源解析.结果表明,盘锦市秋冬季节PM_(2.5)浓度均超过环境空气质量标准(GB 3095-2012)二级标准,秋季OC和EC的平均浓度为10.02μg·m~(-3)和3.91μg·m~(-3),冬季为16.04μg·m~(-3)和5.62μg·m~(-3);采样期间秋冬季节OC/EC均大于2.0,说明各采样点位在秋冬季均可能存在二次污染,Spearman相关分析及线性拟合可知开发区OC与EC来源复杂,第二中学及文化公园OC和EC可能具有同源性;通过EC示踪法对SOC进行定量估算,得出秋季SOC浓度为7.21μg·m~(-3),冬季为23.07μg·m~(-3),对结果进行不确定性分析,可知秋冬季节SOC不确定性的绝对误差和相对误差均在可接受范围内;通过主成分分析得出盘锦市秋冬季节PM_(2.5)中碳组分主要来源于煤烟尘,生物质燃烧以及机动车尾气. 相似文献
5.
为了解京津冀区域PM_(2.5)中碳组分污染特征,于2015年7月和10月及2016年1月和4月在北京、天津、保定、石家庄、沧州5个城市同步采集PM_(2.5)样品,采用热/光分析法分析样品中有机碳(OC)和元素碳(EC),使用OC/EC最小比值法估算二次有机碳(SOC).结果表明:京津冀区域主要城市OC、EC和SOC的年均浓度分别为12.9~28.5、4.1~7.9和3.3~10.4μg·m~(-3),OC/EC和SOC/OC的比值分别为2.4~3.0和0.26~0.32.OC和EC的浓度呈现保定石家庄沧州天津北京的空间分布特点和夏季春季秋季冬季的季节变化特点.OC/EC的比值及OC和EC的相关性在夏季最低,冬季最高,这可能与京津冀区域冬季采暖燃煤有关,冬季不利的气象条件也加剧了碳质气溶胶污染.冬季较高的SOC浓度主要与低温、气态前体物的增加以及频繁出现的逆温、小风和混合层高度降低等不利气象条件有关.京津冀区域碳质气溶胶的污染特征具有空间相似性. 相似文献
6.
为研究杭州市PM2.5中碳组分特征,于2013年12月-2014年2月在7个常规点位和2个对照点同步采集PM2.5样品,分析其污染特征及来源.结果表明:杭州市冬季有机碳(OC)、元素碳(EC)、二次有机碳(SOC)的平均质量浓度分别为(23.7±7.5)(5.0±2.4)和(9.2±4.5)μg/m3,OC/EC[ρ(OC)/ρ(EC)]和SOC/OC[ρ(SOC)/ρ(OC)]的平均值分别为5.3±1.9和0.4±0.2.对照点ρ(OC)、ρ(EC)、ρ(SOC)和OC/EC、SOC/OC分别为常规点位的0.8、0.6、1.2、1.2和1.3倍.采样期间,常规点位和对照点ρ(OC)和ρ(EC)的日均值具有相同的时间变化趋势.对照点ρ(OC)和ρ(EC)的相关性(0.49)低于常规点位(0.61),对照点PM2.5中OC和EC的来源差异性更明显.8个碳组分的丰度分析表明,常规点位和对照点PM2.5中碳组分的来源基本一致,主要来源于道路尘、燃煤、机动车和生物质燃烧.绝对主因子分析法源解析结果表明,杭州市冬季PM2.5中总碳(TC)的主要来源中,燃煤/汽油车排放/道路尘、柴油车排放和生物质燃烧的分担率为79.1%、13.1%和3.5%. 相似文献
7.
本研究于2015年10~11月在南京北郊分昼夜采集PM_(2.5)样品,采用热光透射法(TOT)和离子色谱法对样品中的有机碳(OC)/元素碳(EC)和左旋葡聚糖(levoglucosan)的质量浓度特征进行分析.观测期间OC和EC的平均浓度分别为(11.3±4.9)μg·m-3和(1.1±0.9)μg·m-3,总碳TC占PM_(2.5)的质量分数为22.9%,OC/EC的平均值为7.4,SOC占OC的质量分数为51.9%.PM_(2.5)、OC、EC和SOC质量浓度都体现出夜晚白天的特征,白天OC和EC的相关性好于夜晚(相关性系数分别为0.86和0.7).通过分析PM_(2.5)、左旋葡聚糖和SOC质量浓度以及后向轨迹和火点数据可知南京北郊在13~16号受到来自河北等地生物质燃烧远距离输送的影响.采样期间K+和左旋葡聚糖与OC、EC和SOC的相关性显著(相关性系数分别为0.78、0.79和0.65),经受体示踪物方法估算采样期间生物质燃烧对OC的贡献为21.9%. 相似文献
8.
无锡市冬季典型天气PM2.5中碳组分的污染特征 总被引:1,自引:1,他引:1
于2013-12-03~2014-01-03在无锡市对大气细粒子(PM2.5)进行了连续采集,并用热/光透射法(TOT)分析了其中有机碳(OC)和元素碳(EC)的浓度,结合气象参数,分析了冬季霾产生过程及霾天气下碳组分的污染特征.结果表明,采样期间共有3次霾产生过程,冷空气、风和降水成为改善空气质量最有效的途径.PM2.5、OC及EC的日均质量浓度分别为(132.38±87.17)、(22.80±9.77)和(2.08±1.63)μg·m-3,总碳(TC,TC=OC+EC)占PM2.5的23.57%,同时TC与PM2.5之间存在较好的相关性,相关系数为(R2)0.730;采样期间,TC在PM2.5中所占的比例与PM2.5的浓度之间存在相反的变化趋势,并且在霾天气下TC所占的比例要比非霾天气小,二次无机气溶胶粒子(SO2-4、NO-3、NH+4)的快速增长可能是造成霾天气下细粒子浓度较高的原因之一;OC/EC值为12.83,并且相关性较差,可能与二次污染有关,对二次有机气溶胶(SOC)进行估算:得到SOC平均质量浓度为9.04μg·m-3,占OC的40.96%. 相似文献
9.
为了探究成都平原碳质气溶胶污染特征及来源,于德阳、成都和眉山三地采集了1 a的PM2.5样品,利用光热透射法测量其有机碳(OC)和元素碳(EC). 3个点年均碳质气溶胶的质量浓度(μg·m-3)分别为眉山(OC:15. 8±9. 6,EC:6. 6±5. 3)>成都(OC:13. 0±7. 5,EC:4. 7±3. 6)>德阳(OC:9. 6±6. 1,EC:3. 4±2. 6),对应的总碳质气溶胶(TCA)在PM2.5中的占比分别为36%、34%和30%.由EC示踪法估算获得二次有机碳(SOC)在OC中的占比分别为眉山38%、成都46%和德阳47%. OC和EC质量浓度季节变化显著,呈现出秋冬季高夏季低的特征,在2013年10月12~13日、12月2~7日和2014年1月中下旬出现峰值,同期气溶胶中K+质量浓度激增,说明这些污染过程中生物质燃烧有重要贡献. PMF模型对碳质气溶胶来源解析结果表明,该地区总碳(TC)的主要来源为生物质燃烧源(46%~56%)、二次有机气溶胶源(26%~38%)、机动车排放源(... 相似文献
10.
11.
为研究《打赢蓝天保卫战三年行动计划》等政策实施后北京及其周边区域夏季环境PM2.5含碳组分特征及来源,2019年7月分别在北京城区与河北郊区的2个站点同步连续采集大气PM2.5样品,利用热光碳分析仪分别测定了有机碳(OC)和元素碳(EC)及其组分的质量浓度;通过最小OC/EC比值法、最小相关系数法估算了二次有机碳(SOC)浓度;利用主成分分析、后向轨迹分析等方法探究了含碳气溶胶的来源。结果表明:夏季北京城区PM2.5中ρ(OC)和ρ(EC)平均分别为(6.34±0.64),(1.96±0.29)μg/m3,分别占ρ(PM2.5)的18.65%和5.78%;河北郊区PM2.5中ρ(OC)与ρ(EC)平均分别为(6.29±0.79),(3.54±0.63)μg/m3,分别占ρ(PM2.5)的17.69%和9.53%。2种方法估算出北京城区的ρ(SOC)分别为(3.35±0.59),3.98μg/m3,分别占ρ(OC)的(51.77±6.97)%和68.48%;河北郊区的ρ(SOC)分别为(3.28±0.69),4.17μg/m3,分别占ρ(OC)的(62.42±9.62)%和68.32%。此外,夏季北京城区与河北郊区均存在较为严重的二次污染;北京城区含碳组分主要污染源是混合机动车排放、道路扬尘及燃烧源;而工业燃煤排放、机动车尾气及扬尘是河北郊区含碳组分的主要污染源。后向轨迹分析发现,夏季气团轨迹主要来自东南、西南及偏南方向,且对北京城区与河北郊区2个区域PM2.5中碳组分的影响较大。 相似文献
12.
于2015年8月到2016年4月在菏泽市城区采集PM_(2.5)颗粒,利用热/光碳分析仪测定了颗粒物中8种碳组分,获得了有机碳(OC)和元素碳(EC)的质量浓度,分析了OC与EC的比值、相关性,使用OC/EC比值法估算了二次有机碳(SOC)的浓度,并使用主成分分析法研究8种碳组分含量.结果表明,(1)PM_(2.5)中OC、EC的年质量浓度变化范围分别为1.2~60.6μg·m~(-3)、0.6~24.8μg·m~(-3),OC/PM_(2.5)、EC/PM_(2.5)的季节分布特征相似:冬季春季秋季夏季;(2)OC/EC的年平均值为2.6±1.0,春夏秋冬OC、EC的相关系数分别为0.91、0.56、0.86、0.75,估算的SOC年平均浓度为(4.7±5.0)μg·m~(-3);(3)不同季节8种碳组分质量分数均为EC1最高,EC3最低.主成分分析结果显示,春秋冬这3个季节碳组分的主要来源为燃煤、机动车和生物质燃烧. 相似文献
13.
为研究山西省太原、阳泉、长治和晋城冬季PM2.5中碳质组分的污染特征和来源,于2017-11-15—12-31同步采集了冬季PM2.5样品,采用热/光分析法分析了样品中有机碳(OC)和元素碳(EC)组分含量,使用最小相关系数法估算了二次有机碳(SOC)浓度,并利用相关分析及正定矩阵因子分析法(PMF)研究了各城市PM2.5中碳质组分的来源。结果表明:采样期间各城市OC、EC的平均浓度分别为(13.5±5.7),(8.0±4.4)μg/m3,均呈阳泉((17.3±4.5),(13.6±3.0)μg/m3)>太原((16.5±7.0),(7.8±4.2)μg/m3)>长治((12.8±4.0),(7.7±2.8)μg/m3)>晋城((8.3±2.9),(2.9±1.3)μg/m3)的空间分布特点。各城市OC、EC与气态污染物SO2、NO2和CO均显著相关,表明燃煤源和机动车尾气对碳质组分的影响较大。OC和SOC与相对湿度均呈显著正相关,各城市SOC在OC的占比排序为太原(48%)>长治(45%)>晋城(36%)>阳泉(34%),与相对湿度一致,说明各城市冬季SOC的形成可能主要来自液相反应。PMF解析结果显示:各城市冬季PM2.5中碳质组分主要来源于燃煤源(24.2%~30.4%)、汽油车尾气(21.0%~30.9%)、柴油车尾气(16.1%~24.3%)和扬尘源(17.2%~20.5%),其中燃煤源对长治冬季PM2.5中碳质组分的贡献(30.4%)高于其他3个城市,汽油车尾气对太原的贡献(30.9%)高于其他城市,而柴油车尾气(24.3%)和扬尘(20.5%)对阳泉的贡献均高于其他城市。 相似文献
14.
为研究轻型汽油车尾气PM2.5的排放特征,利用整车测试台架和颗粒物稀释采样系统,对12辆轻型汽油车尾气的PM2.5进行了采集,并进一步分析了PM2.5排放因子及其碳质组分——OC(有机碳)和EC(元素碳)的排放特征;在此基础上,参考文献研究结果,计算了我国轻型汽油车分阶段PM2.5排放因子,结合活动水平数据估算轻型汽油车PM2.5排放量.结果表明:测试的国Ⅰ前~国Ⅳ轻型汽油车PM2.5平均排放因子分别为(73.2±3.8)(50.5±45.4)(34.7±18.4)(22.6±10.3)和(1.0±0.2)mg/km,随排放阶段升级而显著降低.OC是轻型汽油车尾气PM2.5中的主要碳质组分,在TC(总碳)中所占比例超过90%. 2012年我国轻型汽油车PM2.5排放量为21 828.7 t,占机动车颗粒物排放总量的3.5%,其中仅占轻型汽油车保有量17%的国Ⅰ及以前车辆排放了约43%的PM2.5. 研究显示,轻型汽油车尤其是国Ⅰ及国Ⅰ前车辆颗粒物排放不容忽视,在机动车颗粒物减排工作中应给予足够重视. 相似文献
15.
太原市PM2.5中有机碳和元素碳的污染特征 总被引:1,自引:3,他引:1
采集了太原市4个点位冬季和夏季PM2.5样品,利用元素分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的质量浓度,并对碳气溶胶污染水平、时空分布、二次有机碳(SOC)以及OC和EC相关性等特征进行了分析.结果表明,太原市冬季有机碳(OC)、元素碳(EC)平均质量浓度为22.3μg·m-3和18.3μg·m-3,夏季OC、EC平均质量浓度为13.1μg·m-3和9.8μg·m-3,冬季和夏季总碳气溶胶(TCA)占PM2.5的比例分别为56.6%和36.5%;各点位OC和EC质量浓度均呈现冬季夏季的季节特征,冬季OC、EC浓度呈现出较好的均一性,夏季OC、EC质量浓度存在较明显的空间分布差异;太原市SOC污染较轻;冬季OC、EC相关性较强,夏季OC、EC相关性差. 相似文献
16.
为了解常州春季大气气溶胶中水溶性有机碳(WSOC)和有机氮(WSON)的特点和来源,在常州市城郊于2017年春季的3月1日~5月30日采集了84个细颗粒物(PM_(2.5))样品.分析了其中的水溶性组分包括水溶性有机碳、水溶性总氮(WSTN)、水溶性离子以及碳质组分(有机碳/元素碳,OC/EC)的浓度,探讨了WSOC和WSON的浓度水平及其来源.结果表明,采样期间,PM_(2.5)、WSOC和WSON日平均浓度分别为101.97、7.63和1.50μg·m~(-3).其中,WSON占WSTN的12.9%,水溶性无机氮主要以NH+4、NO-3两种形式存在,两者占WSTN的86.15%.WSOC与WSON弱相关(r=0.58),说明WSOC和WSON来源并不完全一致.WSOC与SOC、K+、二次离子(SO2-4、NH+4和NO-3)相关,说明WSOC主要来自生物质燃烧和二次转化;WSON与二次离子相关性强,说明主要来自二次转化.风速是影响WSOC和WSON浓度水平的主要因素,WSON与大气压正相关且与温度负相关.主成分分析结果表明,PM_(2.5)主要来自二次形成、扬尘和燃煤、生物质燃烧、海洋等4个来源.后向轨迹分析表明,长距离传输方向气团中PM_(2.5)和WSOC、WSON总浓度高于短距离传输,但不同传输路径中WSON/WSTN占比无明显差异. 相似文献
17.
兰州春夏季PM10碳组分昼夜变化特征与来源分析 总被引:1,自引:2,他引:1
为探讨兰州市春夏季大气可吸入颗粒物(PM_(10))中碳气溶胶的昼夜变化特征及来源,从2015年4月1日至8月30日分白天(08:00~20:00)和夜间(20:00~次日08:00)对兰州市区PM_(10)样品进行采集,并分析了其中的有机碳(OC)和元素碳(EC)的昼夜浓度.结果表明,采样期间白天PM_(10)、OC和EC的平均浓度分别为(136.0±84.3)、(12.4±3.2)和(2.3±0.7)μg·m-3.夜间,PM_(10)和OC、EC的平均浓度分别为(196.0±109.2)、(16.0±5.3)和(5.0±2.1)μg·m-3.PM_(10)、OC和EC浓度均呈现出夜间高于白天.采样期间白天二次有机碳占有机碳的比值均高于夜间,表明白天受二次有机碳的污染更严重.沙尘日PM_(10)和OC浓度均高于非沙尘日,而EC浓度与非沙尘日接近.沙尘日,二次有机碳和总碳气溶胶的浓度均较高,但对PM_(10)的贡献相对较低.对碳气溶胶8种组分进行主成分分析,结果表明在非沙尘日,白天碳气溶胶主要来源于燃煤、汽油车、柴油车排放和生物质燃烧,夜间主要受到燃煤、扬尘以及柴油车和生物质燃烧的影响. 相似文献
18.
为了解沈阳市空气细颗粒物的污染特征及主要来源,于2015年2月、5月、8月和10月在沈阳市采集PM2.5样品,对PM2.5质量浓度及其化学组分(无机元素、含碳组分和水溶性离子)进行测定.结果显示,采样期间沈阳市PM2.5平均质量浓度为69 μg/m3,是《环境空气质量标准》(GB 3095-2012)年均二级标准限值(35 μg/m3)的2.0.水溶性离子在PM2.5中的含量最高,其次为碳组分、无机元素.富集因子结果表明:沈阳市富集因子值最高的元素来自于燃煤、交通污染、工业排放等污染源.正交矩阵因子分析(PMF)结果表明:PM2.5结果中燃煤源、二次源、工业源、扬尘源和交通源的贡献比分别为33.4%、27.2%、16.7%、11.5%、11.2%. 相似文献
19.
为研究邯郸市PM2.5中碳组分的污染特征及其来源,于2017年4~12月采集PM2.5样品,用热光反射法(TOR)分析PM2.5中有机碳(OC)和元素碳(EC)的质量浓度.结果表明:邯郸市PM2.5和总碳气溶胶(TCA)质量浓度的年均值分别为(88.87±58.89)μg/m3和(31.45±23.35)μg/m3,PM2.5质量浓度超标率为50%,TCA/PM2.5比率的年均值为(38.23%±14.61%),表明邯郸市碳组分污染严重.冬季PM2.5中TCA质量浓度均值为(68.06±23.77)μg/m3,TCA/PM2.5比率的均值为(46.86%±10.07%),OC(37.09±13.05)μg/m3和EC(8.72±3.78)μg/m3浓度明显高于其它季节,表明冬季碳组分污染较为严重.各季节OC/EC比值均大于2,表明邯郸市全年均受二次有机碳(SOC)的污染;OC、EC及SOC与SO2、NO2呈显著正相关,与O3呈显著负相关,尤其是与NO2相关关系最强,说明邯郸市碳质气溶胶可能受到机动车尾气排放的影响.对8种碳组分进行主成分分析,发现道路扬尘、燃煤排放和机动车尾气是邯郸市PM2.5中OC和EC的主要贡献源. 相似文献
20.
为探索北京城区大气细颗粒物( PM2. 5) 及其各组分的浓度特征,于 2019 年全年在车公庄地区开展了 PM2. 5及水溶性离子、碳质组分及金属元素的连续在线监测. 结果表明,2019 年北京城区 ρ( PM2. 5) 平均值为 46. 7 μg·m- 3,化学组分中 ρ[有机物( OM) ]、ρ( NO3-) 、ρ( SO42-) 、ρ( NH4+) 、ρ( EC) 、ρ( Cl-) 、ρ( 微量元素) 和 ρ( 地壳物质) 分别为 9. 1、11. 1、5. 7、5. 4、1. 4、0. 9、1. 6 和 7. 3 μg·m- 3,SNA ( SO42-、NO3-和 NH4+) 合计占到了... 相似文献