首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地基傅里叶变换红外光谱技术(Fourier transform infrared spectroscopy, FTIR)由于其具有高的时空分辨率、对地表大气浓度变化敏感等优点,已成为遥测温室气体柱浓度的重要技术。基于便携式的傅里叶变换红外光谱仪(EM27/SUN)采集的太阳光谱来反演北京市区CO2与CH4柱浓度。通过与高分辨率FTIR观测结果比对,验证了EM27/SUN观测的准确性和可靠性。同时利用正午观测的CO2和CH4柱浓度结果计算了CO2与CH4观测精度。其中CO2的观测精度为0.16×10-6,CH4的观测精度为1.4×10-9。最后,给出了CO2与CH4时间序列变化,CO2与CH4在观测期间的变化较为一致。该研究表明了便携式FTIR观测CO2与CH  相似文献   

2.
利用最新的AIRS卫星观测资料分析了2002年12月~2016年11月全球和东亚地区(70°~140°E,10°~55°N)CH4浓度的时空变化分布特征.研究发现,2003~2016年,全球CH4年平均浓度从1774.2×10-9增加到1789.1×10-9,年增长率约为1.1×10-9/a;东亚地区CH4年平均浓度从1811.5×10-9增加到1841.0×10-9,年增长率约为2.0×10-9/a.在美国西南部、南美洲南部、澳大利亚东南部、中国青藏高原和东北地区等地上空,CH4浓度增幅比较明显,而在北美洲的东北部上空,CH4浓度出现负增长.北美洲东北部和俄罗斯东部等地上空CH4浓度的变化与温度变化呈正相关;如在冬季,该地区温度与周围地区相比更低,同时CH4浓度更低.本文利用近10a的卫星数据获得了CH4浓度的垂直廓线,显示不同纬度带CH4浓度均随着高度的升高逐渐减小,且高纬度地区CH4浓度减小的最快.近年来,在低纬度地区对流层中低层CH4浓度变化较为明显.在对流层低层(850hPa),北半球CH4浓度随着纬度增加逐渐变大;在南半球则随着纬度增加先减小后变大.而在平流层内,CH4浓度在赤道处最大,且随着纬度的升高逐渐减小.此外,CH4的浓度分布存在明显的季节变化:在北半球,大部分地区夏季CH4浓度高于冬季(约20×10-9~40×10-9),但在撒哈拉沙漠和中国新疆塔里木盆地等地区上空,冬季CH4浓度高于夏季(约40×10-9~60×10?9).在冬季,中国四川西部上空的CH4浓度要比青藏高原上空高(约100×10-9~120×10-9).  相似文献   

3.
新乡市夏冬季节PM2.5稳定碳同位素特征分析   总被引:2,自引:1,他引:1  
为了探究新乡市PM2.5中δ13C比值的季节性变化特征及其对污染来源的指示作用,于2017年夏冬季节采集PM2.5有效样品91个,并测定了样品中的总碳、水溶性离子和稳定碳同位素比值(δ13C).夏季和冬季的TC浓度平均值分别为11.78μg·m-3和26.6μg·m-3.夏季δ13C比值为-27.70‰~-25.22‰其中前14 d的δ13C比值波动较大平均值为-26.96‰,而后16d的δ13C比值相对稳定,平均值为-25.69‰,而且前半月和后半月火点数具有较大差异同时Knss+浓度与TC质量浓度显著相关(R2=0.62,P<0.01)这说明夏收季节生物质燃烧可能对δ13C比值有显著影响.新乡地区冬季RH与TC/PM25质量比值的显著负相关(R2=0....  相似文献   

4.
为研究河北省中南部对流层内CH4时空分布特征,2018年6~7月利用空中国王350飞机搭载高精度CH4分析仪和相关辅助设备,对河北中南部城市上空(600~5500m)CH4浓度进行飞机探测.探测期间共飞行4架次,取得7组CH4浓度垂直廓线数据.结果表明:探测期间CH4浓度最小值为1884×10-9,最大值为2038×10-9,多架次垂直方向上平均浓度为(1915±90)×10-9.不同探测架次CH4浓度随高度变化趋势有较好的一致性,随高度增加,均出现先增大后减小,后稳定不变的趋势,且在混合层顶以下(约1000m)存在明显分界线.1000m以下,同高度层CH4浓度变化较大,不同架次间浓度相差最大值达124×10-9,同一架次CH4浓度的垂直梯度变化受大气层结影响明显,位温垂直梯度接近零时,CH4浓度的垂直梯度变化不明显.1000m以上,CH4浓度垂直随高度增加呈指数减小,同高度层CH4浓度变化较小,变化偏差在平均值的5%以内,4000m以上,同高度层CH4浓度振幅最小,差值<15×10-9,此时浓度可代表该区域背景大气的平均浓度.石家庄上空同高度层CH4浓度白天整体大于夜间,随高度降低差值变大,说明石家庄白天CH4排放源强度大于夜间.  相似文献   

5.
准确评估大气CO2浓度和人为CO2排放时空变化对于减缓温室气体排放导致的气候变化至关重要,因此,本文基于GOSAT和OCO-2卫星数据融合生成的全球长时间序列、时空连续的Mapping-XCO2产品,研究2010~2020年中国大气CO2柱浓度(XCO2)时空变化特征以及卫星监测人为CO2排放能力.结果表明:Mapping-XCO2与中国大气本底站观测存在较高的一致性,具有良好的适用性;2010~2020年中国XCO2呈现东高西低的空间分布,年均XCO2为400.4×10-6,年增长速率为2.47×10-6;非生长季XCO2异常可刻画人为CO2排放时空变化,各省级行政区非生长季XCO2异常与人为排放清单EDGAR和ODIAC的相关系数分别为0.71、0.67;2010~2020年京津...  相似文献   

6.
时元智  崔远来  才硕  洪大林  程婕 《环境科学》2023,44(3):1572-1582
稻田是一个既排放CH4又吸收CO2的复杂生态系统,在全球水碳循环和碳收支中发挥着重要作用.利用涡度相关法得到2020年鄱阳湖平原双季直播稻田的CH4和CO2通量,定量揭示了稻田碳通量变化特征、累积量和2种温室气体的综合温室效应.结果表明,双季直播稻田为CH4排放源,全生育期排放量为52.6 g·m-2,日均排放0.208 g·(m2·d)-1. CH4通量具有明显的季节变化特征,强排放期(排放峰)集中在早稻生长中期和晚稻生长前期,早稻85.5%和晚稻92.1%的CH4在强排放期被释放,日尺度峰值分别为0.638 g·(m2·d)-1和1.282 g·(m2·d)-1.CH4通量日变化呈显著单峰型、不显著单峰型和无规律型,强排放期主要为单峰型,该型式下早稻季峰值0...  相似文献   

7.
为研究唐山城市上空CO2与CO浓度时空分布,进一步定量其碳排放,于2018年11月~2019年3月,利用运十二飞机搭载高精度温室气体分析仪和相关辅助设备,对唐山市上空(200m~4600m)CO2与CO浓度进行飞机探测.探测期间共取得6组CO2和CO浓度垂直廓线数据.结果表明:探测期间CO2浓度变化范围406×10-6~453×10-6,CO浓度变化范围27×10-9~1135×10-9.夜间探测有明显的混合层存在时,CO2与CO浓度分布在混合层内有向上聚集现象,且在混合层顶均达到最大值;白天探测无明显的混合层存在时,浓度整体随高度增加而减小.在探测期间整层的平均风力小于4级时,CO2和CO浓度极显著相关,CO2和CO浓度比变化范围32.2~43.9.以2019年2月23日白天的架次为案例进行分析,微风条件下空气团经过城市后,CO2和CO浓度均有所增加,显示当日唐山是CO2和CO的源,结合质量平衡法或大气反演模式可以进一步估算城市CO2和CO排放量.  相似文献   

8.
大气颗粒物是影响空气质量和人类健康的重要因素,了解其污染水平、关键组分来源及变异特征具有重要意义。本研究对贵阳市城区两个代表性监测点(市监测站和黔灵公园马鞍山)的2014年2月14日~20日(冬季)和2014年7月1日~7日(夏季)大气PM10进行了采集,分析其24小时平均质量浓度和硫酸根的硫同位素(δ34S值)组成特征,探讨大气PM10中硫的来源和变化。结果表明,贵阳市2月和7月采样期间大气PM10浓度分别为30~125μg/m3(平均70±29μg/m3)和21~104μg/m3(平均56±22μg/m3),均略高于我国现行空气质量大气颗粒物PM10的24小时平均浓度一级标准限值(50μg/m3)。贵阳市大气PM10中硫酸根的δ34S值范围为-3.98‰~4.99‰(平均0.28‰±2.32‰),且2月显著高于7月;大气颗...  相似文献   

9.
为探究河北省中南部CO2时空分布特征,利用空中国王350飞机搭载高精度CO2分析仪和相关辅助设备,对石家庄、邢台城市上空(600~5600m)CO2浓度进行飞机探测,探测期间共飞行4架次,取得7组CO2浓度垂直廓线数据,探测期间CO2浓度最小值为398.3×10-6,最大值为414.6×10-6,多架次垂直方向上平均浓度为(401.4~403.9)×10-6.CO2浓度随高度的增加,无明显规律性变化.边界层顶位于1000~2000m左右高度,在边界层顶以下受近地面排放源的影响较大.2500m高度上,其浓度随高度变化均存在一个短暂减小的趋势,高空基本不受近地面污染源的影响,CO2浓度接近地面本底浓度.在同一高度上,白天CO2浓度均略高于夜间.夜间CO2在混合层聚集,混合层顶浓度达最大.邢台上空的CO2与CH...  相似文献   

10.
利用中国气象局秦岭气溶胶与云微物理野外科学试验基地长安站2021年4月~2022年3月涡动相关系统观测资料,结合气象观测资料,研究了秦岭北麓城郊过渡带近地面大气CO2、H2O浓度、蒸发量以及湍流通量演变特征,并讨论了气象要素对碳通量的影响.结果表明:观测时段内CO2小时浓度年均值为(404.4±27.9)×10-6,与瓦里关大气背景观测站和全球背景观测站CO2年均值浓度水平相当,水汽小时浓度年均值为9.44g/m3,年总蒸发量为1321.5mm;CO2、水汽浓度和蒸发量均存在显著的月、季节变化特征;CO2和水汽通量存在明显的日、月和季节变化,全年白天均表现为较强的碳吸收,观测时段内CO2总吸收量约为-3047g/m2;夜间表现为碳排放,观测时段内总排放量约为2631g/m2;气温、土壤温度、相对湿度和风速的变化均会对区域内CO2  相似文献   

11.
沈皖豫  黄琼  马静  张广斌  徐华 《环境科学》2022,43(7):3835-3843
不同稻作系统土壤的CH4产生潜力,特别是CH4产生途径(主要为乙酸发酵和CO2/H2还原)间的差异尚不明确.通过添加与不添加氟甲烷(CH3F)抑制剂(添加比例分别为2%和0%)的土壤厌氧培养试验,并采用稳定性碳同位素等方法,对我国3类典型稻田生态系统(稻-麦轮作,RW;稻-休闲,RF;双季稻,DR)土壤CH4产生累积浓度、 CH4产生潜力、溶解性有机碳(DOC)含量、乙酸含量和乙酸产CH4的相对贡献率(fac值)进行了对比研究.结果表明,RF的CH4产生潜力为7.18μg·(g·d)-1,显著低于RW[10.33μg·(g·d)-1]和DR[13.42μg·(g·d)-1](P<0.05);相关分析表明,CH4产生潜力与土壤阳离子交换量及pH呈显著负相关(P<0.01);...  相似文献   

12.
基于车载激光气体分析仪于2020年冬季和2021年春季在杭州道路观测近地面大气CO2和CH4浓度.结果表明:(1)城市不同区域道路近地面大气CO2浓度与城市背景站差值(ΔCO2)的排序为工业区>商业居民混合区>沿江住宅区>自然风景区,而CH4差值(ΔCH4)的排序为沿江住宅区>商业居民混合区>工业区>自然风景区,这说明城市CO2和CH4排放源有差异.(2)城市CO2和CH4排放热点同一位置多次观测浓度均高于周边地区30%以上,且CO2和CH4浓度昼夜差异明显.(3)杭州隧道内CH4:CO2浓度比值为(0.000912±0.00002),表明杭州主城区车辆以汽油车为主.(4)在高度约为20~30m的高架处观测的CO2浓度对于不透...  相似文献   

13.
基于五台山站2017年1月~2020年12月的大气CO2连续观测资料,采用平均移动过滤法(MAF)和后向轨迹分析方法,对五台山大气CO2本底浓度及源汇特征进行研究.结果表明:五台山大气CO2浓度受到区域或局地源汇的影响,筛分后的CO2本底小时浓度振幅为44.9×10-6,小于未经筛分的CO2浓度振幅94.7×10-6.2017~2020年CO2本底浓度呈逐年上升趋势,但增幅放缓;抬升浓度占比有所下降,吸收浓度占比波动较小,表明人类活动对CO2浓度的影响逐年减弱,而五台山周边地区陆地生态系统碳汇作用相对稳定.CO2本底浓度夏季最低,秋冬季次之,春季最高;日变化夏季最明显,峰谷值分别出现在05:00和16:00,其他季节日振幅仅在0.7×10-6~1.8×10-6之间.与本底浓度相比,抬升浓度的差异值自10月至翌年3月明显增大,而吸收浓度的差异值在6~9月最显著,分别反映出人为活动排放源以及陆地生态系统吸收汇对CO2本底浓度的影响.源汇浓度日变化均为单峰结构,抬升浓度白天高、夜间低,吸收浓度刚好相反.春、秋和冬季造成CO2浓度明显抬升的地面风向主要为西南风,且随风速的增加CO2浓度能够保持较高水平,而夏季主要为东北偏东风;春、夏季,2~4m/s的风速有利于进一步降低CO2吸收浓度.后向轨迹分析表明,气团远距离输送对源汇浓度的影响除了取决于气团途径区域的CO2排放情况,还与气团的空间垂直输送路径有关.  相似文献   

14.
为深入了解四川省碳源、碳汇情况,该研究基于XGBoost机器学习算法,对多源卫星(GOSAT、OCO-2和OCO-3)的CO2干空气柱平均摩尔分数(XCO2)数据进行融合填补,重构四川省2015-2021年1 km网格XCO2逐日浓度时空分布。结果表明,XGBoost模型基于网格和天的留出验证R2分别为0.98和0.96,可实现XCO2数据的高精度时空分布重构。四川省2015-2021年XCO2年平均浓度为406.5×10-6,年平均增长速率为2.50×10-6,增长速率呈逐年下降趋势。多年XCO2浓度在春季最高,秋季最低,季节差异为3.4×10-6。XCO2浓度在空间上呈现“东部高,西部低”的分布特征,四川盆地内的城市XCO2浓度普遍较高。各个城市的XCO2在空间上呈现不同的分布特征,与当地碳源、碳汇密...  相似文献   

15.
基于日本GOSAT及美国AIRS反演数据产品,对我国中部六省大气CO2时空分布特征进行研究,结果表明:由GOSAT反演的中部地区2010~2013年大气CO2年均柱浓度由389.36×10-6增长到396.52×10-6,年均绝对增长率达2.39×10-6/a,呈现出冬春季高值、夏秋季低值的季节变化特征,其柱浓度年均值及去长期趋势后的月均值均略低于长三角地区,高于京津冀和东三省地区;其CO2柱浓度高值区集中在湖南、江西及周边一带,年均绝对增长率为2.01×10-6,其柱浓度年均值及去长期趋势后的月均值与长三角地区相当,略低于京津冀和东三省地区,由于受地面源汇影响较小,其与GOSAT反演结果相反,可能是由于AIRS反映了对流层中层大气状况,而GOSAT则更多地反映了近地面层大气CO2变化.  相似文献   

16.
该研究利用温室气体观测卫星上的傅里叶变换光谱仪反演的CH4产品,结合瓦里关地面站点观测的CH4浓度数据对遥感产品进行验证和校正,并基于校正后的数据分析了2010-2019年中国CH4时空变化特征及其影响因素。结果表明中国区域CH4柱浓度呈现明显的增长趋势,2010和2019年CH4柱浓度年均值分别为5.43和5.71 mg/m3,10年间增长了0.28 mg/m3,年均增长率为0.51%。同时,CH4柱浓度呈现12个月的周期变化,且存在明显的时空差异,月均最小和最大值分别出现在2月和9月,多年平均值分别约为(5.50±0.10)和(5.62±0.11) mg/m3,差值约为0.12 mg/m3,其中2019年2月和9月分别为5.64和5.78 mg/m3。多年平均CH4柱浓度值在5.47~5.68 mg/m3  相似文献   

17.
基于环境空气质量站点监测数据及卫星遥感资料,研究了2015~2020年济南市近地面臭氧(O3)污染的时空分布特征、变化趋势和前体物生成敏感性.结果表明,2015~2020年济南市O3浓度呈上升趋势,全年O3日最大8 h滑动平均值(MDA8)的第90百分位数(即年评价浓度)和4~9月MDA8 O3浓度年均值分别以4.8μg·(m3·a)-1和3.8μg·(m3·a)-1的速率增长;各监测站点间O3浓度水平差异逐渐缩小,且O3浓度高值范围进一步扩大,济南市有16.1%和22.6%的监测点年评价值和4~9月MDA8 O3出现了显著的正趋势(P<0.05),这些监测站点主要位于市区和靠近市区的郊区.卫星遥感监测数据显示2015~2020年4~9月济南市NO2对流层柱浓度下降20.6%,年下降速率为0.3×1015  相似文献   

18.
于2020年12月1日~2021年12月1日分别在深圳市大学城和路边站两点位对大气CO2和CO浓度进行了为期1a的观测.本次观测期间内两点位大气CO2平均浓度分别为432×10-6和439×10-6,均呈现了“秋冬季高、春夏季低”的季节变化特征与“昼低夜高”日变化特征,且日变化特征在早晚高峰期受到交通源排放的显著影响.此外,通过引入CO2和CO的净变化值得到大学城和路边站两点位的ΔCO2/ΔCO值分别为136.8~184.8、59.0~119.3,结果表明机动车排放对深圳市大气CO2贡献突出.  相似文献   

19.
根据渭南市机动车保有量和抽样调查与观测数据,采用 MOVES 模型计算了渭南市 2017—2019 年道路移动源 CO2、CH4、N2O 和 CO 4 种温室气体的排放量,分析了机动车车型、燃料和排放标准对温室气体排放量的影响.基于ArcGIS和渭南市道路网信息,建立了高分辨率(1 km×1 km 和 1 h×1 h)的温室气体排放清单 . 结果表明,渭南市 2019 年道路移动源 CO2、CH4、N2O 和 CO 的排放量分别为 424.322×104、0.044×104、0.007×104和 2.808×104 t,以 CO2当量计,机动车温室气体的总排放量为 432.843×104 t. 4种道路移动源温室气体中,CO2占总温室气体排放量的98.03%. 渭南市小型客车对温室气体的贡献率最大,分别排...  相似文献   

20.
2018年,汾渭平原首次被确定为大气污染防治重点区域,成为“蓝天保卫战”继京津冀地区的第二个主战场.本文利用卫星OMI传感器反演产品,对汾渭平原2016—2020年二氧化氮、臭氧和甲醛数据进行分析,结果表明:在空间上,汾渭平原NO2柱浓度有自东向西逐渐减弱的趋势.高浓度地区受煤炭、物流、钢铁、航空等产业,以及特殊地形等因素影响,沿山脉走势呈“人”字形分布.在时间上,年均NO2浓度呈总体减少趋势,2018年最大,2020年最小;月均变化呈U字型,1—8月,NO2柱浓度逐月降低,9—12月逐月增加.NOx敏感控制区、VOCS-NOx协同控制区,以及VOCS敏感控制区时的年均NO2柱浓度分别为1.48×1015~6.3×1015、6.3×1015~13.2×1015、13.2×1015~20.1×1015 molec·cm...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号