首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Sentinel–5P卫星TROPOMI数据,利用随机森林方法反演2018~2020年淮河流域地面NO2浓度,采用推算法获得淮河流域2018~2020年NO2干沉降通量,并通过划分不同集水区(水域、农田、城区和植被覆盖区)估算大气NO2干沉降对淮河流域水体氮素的贡献.结果显示,卫星反演地面NO2浓度与地面站点实测资料一致性较高,相关系数(R)为0.94,平均绝对误差(MAE)为2.7,均方根误差(RSME)为4.1.淮河流域地面NO2浓度和NO2干沉降通量均有明显的季节变化,春夏秋冬4个季节地面NO2平均浓度分别为13.7,12.2,17.6,23.1μg/m3;NO2平均干沉降通量分别为1.25,1.13,1.61,2.13kg N/(hm2·a).淮河流域地面NO2浓度和干沉降通量均表现为南北部高,东西部低.农田区域NO2  相似文献   

2.
多轴差分吸收光谱仪(MAX—DOAS)是用来监测大气中痕量气体成分的专用仪器,它能同时自动监测SO2、NO2和03三种污染气体,得到的垂直柱浓度对研究污染物的时空分布特点具有重要意义。分析了2011年5月下旬至2012年4月中旬期间MAX—DOAS在重庆市的测量数据,结果表明:夏季SO2的柱浓度高于其它季节,并在每个季节都出现了峰值:SO2与NO2之间浓度变化趋势相同,且最大小时浓度值都集中在上午;O3垂直柱浓度受气象条件和臭氧前体物的影响呈夏季高、秋冬低的季节性变化;通过多元回归建立了O3柱浓度与气象因素、前体物的关系式。  相似文献   

3.
为研究京津冀地区NO2时空变化与气象条件影响,本文利用变分方法订正TROPOMI卫星NO2遥感数据,结合环境气象评估指数(EMI)分析气象条件对NO2浓度变化的影响.结果表明,经过变分方法订正过的NO2浓度具有更可靠和高分辨率的时空分布特征.京津冀西北部地区的NO2浓度低,东部和南部浓度较高.北部燕山、西部太行山形成的半包围地形阻挡了大气污染物在京津冀平原地区的扩散,产生了不利的气象条件.其中,燕山南部的北京、天津和唐山以及太行山东部的保定、石家庄、邢台、邯郸等地气象条件较差,而高海拔地区的张家口、承德、秦皇岛大气扩散条件较好.NO2浓度在春、夏季受到气象条件变化的显著影响,而在秋、冬季受到气象条件变化的影响较小.气象条件对NO2不同浓度区间的作用不同,NO2浓度较低和较高时气象条件对其作用更为显著,而浓度处于转折区间时,气象条件对其影响较小.本研究开展的TROPOMI卫星变分订正、NO2浓...  相似文献   

4.

为研究城市道路机动车排放NO2浓度的变化,选取重庆市大渡口区4条道路进行1周的自动在线监测,结合道路RFID基站的车流量及车型信息,分析NO2浓度与车流变化特征及其相关性。结果表明:4条道路NO2日均浓度为29~57 μg/m3,均低于GB 3095—2012《环境空气质量标准》二级标准限值;NO2小时浓度变化趋势为20:00左右峰值浓度明显高于08:00峰值浓度,最小值出现在14:00左右。4条道路车流量呈明显的早晚高峰趋势,周末的车流量比工作日平均车流量下降20%~40%,出现比例较高的车型为小型客车、出租车、公交车、轻型货车。NO2小时浓度变化与车流量变化规律基本一致,均呈现较为明显的早晚高峰趋势,但晚高峰时段NO2峰值浓度的出现稍微滞后于车流量峰值的出现。

  相似文献   

5.
利用ECOTECH 公司系列气体监测仪,对青海湖区域背景点夏季的大气污染物的变化规 律及其和气象因素之间的关系进行了分析。结果表明,夏季三种气体中NO2 浓度较低,平均值 为2.30×10-9,其日内变化呈现单峰形式,日较差非常小;SO2 浓度较高,平均值达到20.82×10-9, 波幅变化较大, 其日内变化表现的较不规则;O3 浓度夏季平均值高达57.63×10-9,日变化呈现单 谷形态,早晨7:00-8:00 达到最低值;三种污染物均在凌晨或午夜达到高值。和气象因子的相关 分析表明,NO2 静风情况下浓度较低,主要污染源为西北及东北方向的公路及铁路机动车排放; SO2 主要来源于当地生物质燃烧排放,同时东南风向时其浓度增高;静风时O3 浓度最高,其受 风向影响较小。  相似文献   

6.
基于OMI卫星遥感数据的中国对流层NO2时空分布   总被引:7,自引:2,他引:7  
基于2004年11月—2008年1月OMI卫星对流层NO2的垂直柱浓度数据,对我国8个自然地理分区对流层NO2垂直柱浓度的年均值、月均值的分布进行了分析,依据月均值变化建立正弦曲线拟合模型,依据该模型定量分析了各自然区对流层NO2垂直柱浓度的变化趋势、变化周期和变化幅度等特征. 结果表明:拟合模型可较好地反映我国8个自然区对流层NO2垂直柱浓度的变化特征;证明了人类活动影响了对流层NO2垂直柱浓度的分布及其变化,这种影响主要体现在对流层NO2垂直柱浓度的高低、变化的周期性以及增长趋势等方面.   相似文献   

7.
基于OMI卫星遥感反演的NO2柱浓度数据,分析了近11a甘肃省对流层NO2柱浓度的时空变化及相关影响因素,同时利用HYSPLIT模型探究了大气污染物的来源.结果表明:从空间上,NO2柱浓度呈现出由甘肃东北区向西南区递减趋势,最高值主要分布于庆阳市全境和平凉市少部分地区.从2008~2014年NO2柱浓度值不断增长至最高值,高值区逐步扩大;2015~2018年NO2柱浓度值波动变化,呈现出向周围区域递减的趋势,高值区范围缩小;从时间上,2008~2018年对流层NO2柱浓度整体呈上升趋势,对流层NO2柱浓度四季均值分布为:夏季>春季>秋季>冬季;NO2柱浓度每年在6~8月达峰值,9月后开始下降,年内谷值出现在12月份~次年2月份;对研究区NO2柱浓度的贡献最大的是自然要素.高温、降水有利于土壤排放NO2,植被覆盖率对NO2起到一定的消减作用.利用HYSPLIT得出2009~2018年每年7月庆阳市NO2的外部输送路径,其中主要路径以陕西地区为主.  相似文献   

8.
京津冀与长三角区域大气NO2污染特征   总被引:4,自引:4,他引:4  
王英  李令军  刘阳 《环境科学》2012,33(11):3685-3692
基于地面监测及遥感反演数据,研究了京津冀与长三角区域大气NO2污染特征,并进行了对比分析.从2005~2011年的平均近地面质量浓度和垂直柱浓度来看,京津冀与长三角中心城市大气NO2基本处于同一污染水平;其区域背景站的NO2浓度也差异不大,且与两大区域过渡地带的合肥市大致相同.区域NO2高浓度中心夏季较为分散,秋冬季高浓度范围明显扩大,冬季全部连为一片.近年来随着中心城区污染企业的外迁,北京、上海等城市核心区NO2近地面污染有所缓解,但区域背景站NO2近地面浓度和垂直柱浓度都有所升高,京津冀与长三角NO2整体污染水平形势依旧严峻.从区域分布看,北京、上海等城市NO2浓度较高,NO2柱浓度高出区域背景的50%左右,大约是欧亚大陆背景水平的3倍;近地面NO2浓度地域差异更大,北京、上海等中心城市NO2近地面质量浓度是城市清洁区的2倍,是区域背景的10倍以上,达欧亚大陆背景站瓦里关的上千倍.北京奥运及上海世博等大型活动之前及期间大气污染集中整治效果较为明显,但活动结束后,城市大气NO2污染都出现反弹.结果表明,区域空气质量的持续改善需要区域内各省市常抓不懈的联防联控,仅靠短期内运动式的污染治理难以从根本上解决大气环境问题.  相似文献   

9.
利用OMI卫星反演的较高分辨率(0.125°×0.125°)对流层NO_2(Tro NO_2)柱浓度数据,分析了近12年海南岛TroNO_2柱浓度的时空变化,同时,结合MODIS卫星反演的气溶胶光学厚度(AOD)资料、海口市空气质量指数(AQI)、GDP、SO_2排放总量,以及民用汽车保有量等探究其长期变化与成因.结果表明:海南地区TroNO_2柱浓度空间分布表现为北半部高于南半部、四周沿海高于中部山区的特征,其中,北部地区最大值可达20×1014molec·cm~(-2)以上.近12年来海南地区TroNO_2柱浓度表现为上升的变化趋势.季节变化表现为冬季高于夏季,夏季浓度偏低和雨水的冲刷作用有关,而冬季偏高与旅游过冬人口增多和外源输送作用有密切联系.四季TroNO_2柱浓度均有不同程度的上升,而且季节差异在2010年以后有增大的趋势.海南地区TroNO_2柱浓度分布与岛上经济水平和人口分布关系密切,海南地区民用机动车拥有量近10年呈现快速的增加趋势,机动车尾气NO_2排放也不容忽视.  相似文献   

10.
天津夏季低层大气O3和NO2浓度垂直分布   总被引:2,自引:3,他引:2  
利用2007年8月8-24日天津255 m气象铁塔上连续17 d的ψ(O3)和ψ(NO2)及同期气象观测数据,分析了ψ(O3)和ψ(NO2)(以小时平均值计)的日变化和垂直分布规律及其与气象因子之间的关系.结果表明:天津市近地层ψ(O3)分布具有明显的日变化和垂直分布特征,昼夜差异显著;一般情况下,ψ(O3)日均值在220 m高度处最大,120 m处次之,40 m处最小;ψ(O3)与温度和风速呈正相关,而与相对湿度呈负相关.ψ(NO2)日变化多为双峰型,白天较低;ψ(NO2)垂直差异较小,夜间稳定层使NO2产生局地积累,低层大于高层;ψ(NO2)与温度和风速呈负相关,与相对湿度的关系比较复杂,白天呈正相关,夜间呈负相关.  相似文献   

11.
利用差分吸收光谱系统对O3,SO2和NO2的监测分析   总被引:4,自引:0,他引:4  
结合我国对空气质量自动监测系统质量保证的要求及差分吸收光谱(DOAS)技术自身的技术特点,重点讨论了对南京江北地区的大气污染物的DOAS监测数据的质量控制, 并对2007年12月—2008年8月ρ(O3),ρ(SO2)和ρ(NO2)的日、季节变化特征进行了分析. 结果表明:ρ(O3),ρ(SO2)和ρ(NO2)小时均值的频率分布峰值分别出现在30~40,20~30和30~40 μg/m3;三者超过《环境空气质量标准》(GB3095—1996)一、二级标准的频率分别为4.37%和1.02%(O3),21.78%和0.89%(SO2),5.65%和0 (NO2);ρ(O3)季节变化十分明显,春季最高;ρ(SO2)和ρ(NO2)的日变化与局地排放源、大气扩散能力和人类活动密切相关;ρ(O3)和ρ(NO2)日变化呈负相关.   相似文献   

12.
NO2是重要的痕量气体,对其监测有助于大气污染治理。本文基于Sentinel-5P大气污染监测卫星提供的对流层NO2浓度数据和总NO2浓度数据,借助谷歌地球引擎(google earth engine,GEE)分析了2018~2021年间中国大气NO2浓度时空变化特征,使用OLS模型揭示了中国地区NO2浓度的主要影响因子。结果表明:我国对流层NO2浓度空间分布呈现东高西低的总体格局,东中部城市群对流层NO2柱浓度水平明显呈现冬高夏低、春秋过渡的季节特征,西部大部分城市的四季变化不明显。北京、深圳、上海3所城市NO2柱浓度分布呈现出较为显著的圈层结构。OLS模型结果表明,中国地区NO2浓度变化受到社会经济和自然因素的共同影响,其中城市化程度是影响NO2排放的重要因子。  相似文献   

13.
为探讨石家庄市NO2柱浓度时空分布及潜在污染源区,该文利用2019-2021年L2级别的TROPOMI二氧化氮数据、石家庄市8个国控点环境自动监测站的NO2、O3、PM2.5浓度数据和气象要素数据以及全球数据同化系统中的气象数据,对石家庄市NO2时间变化、空间分布、污染传输通道城市以及潜在源贡献区进行分析。结果表明:石家庄市NO2浓度年内变化趋势呈“U”型,季节性明显,NO2浓度冬季(13.33×1015molec/cm2)>秋季(12.76×1015molec/cm2)>春季(4.96×1015molec/cm2)>夏季(4.09×1015molec/cm2);NO2浓度空间表现为“主城区高、四周低”的椭圆带状分布,并形...  相似文献   

14.
利用OMI卫星数据,分析了2005~2009年渤海对流层NO2的时空分布特征,研究发现近5 a渤海海域对流层NO2浓度空间分布不均,季节变化及年度增长趋势明显。空间分布上渤海西南部的渤海湾及莱州湾等海域浓度比较大,而东北部的辽东湾浓度比较低;NO2浓度季节变化也非常大,12月份垂直柱浓度(13.464×1015mol/cm2)是8月份(4.959×1015mol/cm2)的2.7倍。分析渤海湾与其周边的京津塘、环渤海西南部地区NO2浓度的月变化,发现冬季京津塘地区对渤海NO2浓度影响比较大,而夏季环渤海西南部地区对其影响比较大。  相似文献   

15.
以长三角城市群为研究对象,利用卫星遥感观测数据协同分析长三角地区大气NO2和CO2浓度的时空变化特征和驱动因子,揭示了长三角地区污染物和CO2高浓度地区空间格局.结果表明长三角城市群地区大气NO2和CO2浓度的时空分布及变化特征呈现了受化石燃料燃烧和机动车排放等人为活动以及区域地形、地表覆盖、气候等自然条件的综合影响结果.大气NO2和CO2高浓度值围绕太湖明显呈口对西南向的U字形分布,一致于围绕太湖分布的杭州、上海、苏州、无锡、常州和南京等大型城市区域,以及安徽铜陵地区的工业排放区.大气NO2浓度值呈现秋冬时期较高,夏季最低的季节分布特征.大气CO2浓度受植被CO2吸收和CO2的积累影响,8~9月最低,4~5月最高.此外,随着人为排放活动的急剧减少,2020年1~3月的大气NO2浓度比2019年同时期降低了50%以上,其中分布了以钢铁厂、燃煤厂为主的大型工业热源的城市NO2浓度下降最多,如镇江、南京、马鞍山.  相似文献   

16.
为研究青藏高原大气臭氧的光化学过程及其与气溶胶的相互作用,1998年夏季在西藏拉萨郊区对大气CO,SO2及NO2进行了综合测量.初步分析表明,近地层CO日平均质量分数为140×10-9~750×10-9,夏末呈明显增高趋势,CO含量的日变化呈双峰型,清晨和傍晚较高,与当地人为活动排放、风向频率和大气混合层高度的日变化密切相关;SO2平均质量分数为0.15×10-9,NO2为0.39×10-9,NO2约是SO2的2.6倍,两者间存在一定的正相关,大致反映了该地区生物质燃料占主导的污染排放特征.   相似文献   

17.
基于高分辨率的TROPOMI数据,分析了我国疫情爆发期的NO2空间分布情况,同时对比了疫情同比期和环比期不同地区的变化情况.分析表明,全国范围内NO2柱浓度的同比下降率和环比下降率分别为40.46%和50.09%,经济发达且人口稠密的城市群,排放量下降较为显著,其中江苏、河南、山东、浙江等NO2历史排放较高的省份受疫情影响更大.湖北省疫情期的NO2柱浓度绝对值(1.63×1015molec/cm2)在中东部省份属于最低位水平,同比和环比下降率也均在50%以上.相对来说,武汉、孝感等周边城市的影响远大于十堰、恩施等西部山区.地基国控站点的NO2质量浓度也显示了与卫星观测较一致的空间分布和变化趋势,证明了采用“自上而下”的遥感手段,可以对不同区域的大气污染排放强度和社会经济活动水平进行快速评估.  相似文献   

18.
基于WRF-Chem模式模拟了关中盆地2019年1月2—14日一次颗粒物污染事件,评估了NOx和SO2减排及其在颗粒物污染中的协同作用对PM2.5污染的影响。敏感性实验结果表明:NOx减排可使PM2.5中硝酸盐含量下降,但大气中O3浓度上升,大气氧化能力增强,其他二次组分上升,导致PM2.5下降不明显;SO2人为源减排可使硫酸盐质量浓度下降,但由于硫酸盐在PM2.5中占比较低,当SO2减排75%时,PM2.5仅下降1.74%;当减排比例较高时,NOx和SO2同时减排更有利于颗粒物污染防治。PM2.5质量浓度在NOx和SO2同时减排75%时比分开减排75%时多下降0.75%,主要是硫酸盐下降所致;对气溶胶含水量进行分析,发现NOx<...  相似文献   

19.
利用四电极电化学传感器开展大气NO2和O3监测研究.为解决温度和湿度对传感器响应的影响问题,提出了一种具有温湿度补偿与零点校正功能的大气NO2和O3测量结果校准模型,通过活性炭吸附特性获得干净的背景气体,实现传感器准确的零点校正,并利用实验系统实测数据结合多元线性回归方法获得校准模型参数.首先对传感器线性响应特性进行了测试,发现O2和O3的测量灵敏度分别为3.889 ppbv·mV-1和4.107 ppbv·mV-1.同时,在合肥西郊科学岛开展了为期2 d的大气NO2和O3连续观测,发现两者的浓度分别为0~30 ppbv和2~100 ppbv.最后将传感器观测结果与NOx/O3分析仪测量结果进行了回归分析,发现两者测得的NO2线性拟合斜率为0.9701±0.0182,R2为0.8378,测得的O3线性拟合斜率为0.9850±0.0101,R2为0.9431.研究表明,校准后的电化学传感器可用于大气NO2和O3的长期监测,可为推动大气环境监测技术发展提供新的思路.  相似文献   

20.
为了探索海南地区对流层CO2浓度[以φ(CO2)计]时空变化特征,采用2002年9月—2012年2月AIRS反演的对流层中层CO2产品,利用北半球全球本底站瓦里关站和飞机观测φ(CO2)对该产品进行验证,结合统计分析方法对海南地区φ(CO2)的月、季、年平均值的时空变化特征进行了研究.结果表明:AIRS反演φ(CO2)与地基和不同纬度带海洋上空飞机观测数据对比均具有很好的一致性,并且与飞机观测验证偏差更小,二者相关系数均在0.9以上,总体月均值偏差小于2×10-6;全国φ(CO2)呈现北高南低的分布规律,并且存在较为明显的分界线,形成4个高值中心(塔克拉玛干沙漠、塔里木盆地、内蒙古西部和东北平原)和2个低值中心(青藏高原西南部和云南地区),海南地区平均φ(CO2)为382.67×10-6,略高于云南低值中心的381.45×10-6;全国φ(CO2)呈现明显逐年增加趋势,其年均增长速率为2.16×10-6,而海南地区亦呈现显著增加趋势,年均增长速率为2.11×10-6,低于全国水平;φ(CO2)呈季节性波动特性,全国φ(CO2)最高值出现在春季,而海南地区为夏季,最低值均出现在秋季;海南地区西部海域、陆地和东部海域上空φ(CO2)年增长速率分别为2.09×10-6、2.14×10-6和2.11×10-6,表明海南陆地上空增速略大于海洋地区,西部和东部海域上空增长速率基本保持一致.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号