首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long-term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5-fold increase in the area burned annually and an associated 41% decrease in the amount of spruce-lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.  相似文献   

2.
Interest in the response of moose to climate change has increased because of the potential role they play in the conservation of woodland caribou, and threatened loss to recreational and economic opportunities. The objective of this study is to develop a plausible, parsimonious, systems-level model of moose population dynamics that will be useful in exploring the response of moose populations to climate projections. The study begins with a statistical model of moose carrying capacity, which is then integrated into a systems-level model that predicts moose density based on explicit causal factors. Scenario analysis was conducted using a variety of assumptions concerning biotic and abiotic interactions, and under the A2 climate scenario all model scenarios predict a decline of moose density at the southern limits of the Ontario distribution and an increase at the northern extents. Predicted declines are a result of lower carrying capacity and higher heat stress, parasite loads and wolf predation. Given the sensitivity of the model to density-dependent factors, the indirect effect of parasites on decreased recruitment may have greater impact on moose than the direct effect of increased death rate. Results indicate that conservation planning for woodland caribou populations should account for possible increases in moose and wolf populations.  相似文献   

3.
Abstract: Maintenance of viable populations of many endangered species will require conservation action in perpetuity. Efforts to conserve these species are more likely to be successful if their reliance on conservation actions is assessed at the population level. Woodland caribou (Rangifer tarandus caribou) were extirpated recently from Banff National Park, Canada, and translocations of caribou to Banff and neighboring Jasper National Park are being considered. We used population viability analysis to assess the relative need for and benefits from translocation of individuals among caribou populations. We measured stochastic growth rates and the probability of quasi extinction of four populations of woodland caribou with and without translocation. We used two vital rates in our analysis: mean adult female survival and mean number of calves per breeding‐age female as estimates of mean fecundity. We isolated process variance for each vital rate. Our results suggested the Tonquin caribou population in Jasper is likely to remain viable without translocation, but that translocation is probably insufficient to prevent eventual extirpation of the two other populations in Jasper. Simulated reintroductions of caribou into Banff resulted in a 53–98% probability of >8 females remaining after 20 years, which suggests translocation may be an effective recovery tool for some caribou populations.  相似文献   

4.
In population modeling, a considerable level of complexity is often required to provide trustworthy results, comparable with field observations. By assuring sufficient detail at the individual level while preserving the potential to explore the consequences at higher levels, individual-based modeling may thus provide a useful tool to investigate dynamics at different levels of organization. Still, population dynamics resulting from such models are often at odds with observations from the field. This may be partly caused by a lack of focus on the individual dynamics under conditions of food stress and starvation. I developed a physiologically structured, individual-based simulation model to investigate life history of Daphnia and its effect on population dynamics in response to the productivity of the system. In verifying model behavior with available literature data on life history and physiology, I paid special attention to the dynamics of food intake and the verification of individual level results under conditions of food limitation and starvation. I show that the maximum filtering rates under low food levels used in the current model are much closer to measured filtering rates than the ones used in other models. Being consistent with results on physiology and life history from experiments at a wide range of food availability (including starvation), the model generates low amplitude or high amplitude population density cycles depending on the productivity of the system, as observed in field and experimental populations of Daphnia and with the minimum population densities being one to two orders of magnitude lower in the high amplitude than in the low amplitude cycles. To generate results which are not only qualitatively but also quantitatively comparable to experimental and field observations, however, a crowding effect on the filtering response has to be incorporated in the model.  相似文献   

5.
Fragmentation of the boreal forest by linear features, including seismic lines, has destabilized predator–prey dynamics, resulting in the decline of woodland caribou (Rangifer tarandus caribou) populations. Restoration of human-altered habitat has therefore been identified as a critical management tool for achieving self-sustaining woodland caribou populations. However, only recently has testing of the response of caribou and other wildlife to restoration activities been conducted. Early work has centered around assessing changes in wildlife use of restored seismic lines. We evaluated whether restoration reduces the movement rates of predators and their associated prey, which is expected to decrease predator hunting efficiency and ultimately reduce caribou mortality. We developed a new method for using cameras to measure fine-scale movement by measuring speed as animals traveled between cameras in an array. We used our method to quantify speed of caribou, moose (Alces alces), bears (Ursus americanus), and wolves (Canis lupus) on treated (restored) and untreated seismic lines. Restoration treatments reduced travel speeds along seismic lines of wolves by 1.38 km/h, bears by 0.55 km/h, and caribou by 1.57 km/h, but did not reduce moose travel speeds. Reduced predator and caribou speeds on treated seismic lines are predicted to decrease encounter rates between predators and caribou and thus lower caribou kill rates. However, further work is needed to determine whether reduced movement rates result in reduced encounter rates with prey, and ultimately reduced caribou mortality.  相似文献   

6.
Two woodland caribou ( Rangifer tarandus caribou ) ecotypes, mountain and northern, were translocated to the southern Selkirk Mountains in northern Idaho (U.S.A.) to augment a remnant subpopulation. The translocation resulted in an additional subpopulation that used the general area of the release site. The mountain ecotype stock exhibited patterns of movement and habitat use similar to those of the resident subpopulation. The northern ecotype stock exhibited more variable habitat use, especially in the first year after translocation. Dispersal of the northern stock was not as extensive as that of the mountain stock. Fourteen of 22 caribou from the northern stock and 6 of 18 caribou from the mountain stock died during the 3-year period after the release. Our results suggest that when donor subpopulations must be used that do not closely compare with resident subpopulations extinct or extant, larger numbers of individuals may be needed to establish a self-sustaining population.  相似文献   

7.
Based on numerical experiments with a new physiologically structured population model we demonstrate that predator physiology under low food and under starving conditions can have substantial implications for population dynamics in predator-prey interactions. We focused on Daphnia-algae interactions as model system and developed a new dynamic energy budget (DEB) model for individual daphnids. This model integrates the κ-rule approach common to net assimilation models into a net-production model, but uses a fixed allocation of net-productive energy in juveniles. The new DEB-model agrees well with the results of life history experiments with Daphnia. Compared to a pure κ-rule model the new allocation scheme leads to significant earlier maturation at low food levels and thus is in better agreement with the data. Incorporation of the new DEB-model into a physiologically structured population model using a box-car elevator technique revealed that the dynamics of Daphnia-algae interactions are highly sensitive to the assumptions on the energy allocation of juveniles under low food conditions. Additionally we show that also other energy allocation rules of our DEB-model concerning decreasing food levels and starving conditions at the individual level have strong implications for Daphnia-algae interactions at the population level. With increasing carrying capacity of algae a stable equilibrium with coexistence of Daphnia occurs and algae shifts to limit cycles. The amplitudes of the limit cycles increase with increasing percentage of sustainable weight loss. If a κ-rule energy allocation is applied to juveniles, the stable equilibrium occurs for a much narrower range of algal carrying capacities, the algal concentration at equilibrium is about 2 times larger, and the range of algae carrying capacities at which daphnids become extinct extends to higher carrying capacities than in the new DEB-model. Because predator-prey dynamics are very sensitive to predator physiology under low food and starving conditions, empirical constraints of predator physiology under these conditions are essential when comparing model results with observations in laboratory experiments or in the field.  相似文献   

8.
《Ecological modelling》2005,186(3):326-344
We present a model framework for the simulation of growth and reproduction of Daphnia at varying conditions of food concentration and temperature. The core of our framework consists of an individual level model that simulates allocation of assimilated carbon into somatic growth, maintenance costs, and reproduction on the basis of a closed carbon budget. A fixed percentage of assimilated carbon is allocated into somatic growth and maintenance costs. Special physiological adaptations in energy acquisition and usage allow realistic model performance even at very low food concentrations close to minimal food requirements. All model parameters are based on physiological measures taken from the literature. Model outputs were thoroughly validated on data from a life-table experiment with Daphnia galeata. For the first time, a successful model validation was performed at such low food concentrations. The escalator boxcar train (EBT) was used to integrate this individual level model into a stage-structured population model. In advance to previous applications of the EBT to Daphnia we included an additional clutch compartment into the model structure that accounts for the characteristic time delay between egg deposition and hatching in cladocerans. By linking two levels of biological organisation, this model approach represents a comprehensive framework for studying Daphnia both at laboratory conditions and in the field. We compared outputs of our stage-structured model with predictions by two other models having analogous parameterisation: (i) another individual level Daphnia model (Kooijman–Metz model) and (ii) a classical unstructured population model. In contrast to our Daphnia model, the Kooijman–Metz model lacks the structure to account for the optimisation of energy acquisition and maintenance requirements by individual daphnids. The unstructured population model showed different patterns of population dynamics that were not in concordance with typical patterns observed in the field. Thus, we conclude our model provides a comprehensive tool for the simulation of growth and reproduction of Daphnia and corresponding population dynamics.  相似文献   

9.
An individual-based model was developed to predict the population dynamics of Daphnia magna at laboratory conditions from individual life-history traits observed in experiments with different feeding conditions. Within the model, each daphnid passes its individual life cycle including feeding on algae, aging, growing, developing and – when maturity is reached – reproducing. The modelled life cycle is driven by the amount of ingested algae and the density of the Daphnia population. At low algae densities the population dynamics is mainly driven by food supply, when the densities of algae are high, the limiting factor is “crowding” (a density-dependent mechanism due to chemical substances released by the organisms or physical contact, but independent of food competition).  相似文献   

10.
Cyclic population dynamics of forest insects with periods of more than two generations have been discussed in relation to a variety of extrinsic and intrinsic forces. In the present study, we employed the selection pressure of density dependent competitive interactions according to Witting's equations (Witting, 2000) as driver for a discrete spatiotemporal model of the green oak leaf roller (Tortrix viridana). The model was successfully parameterised to rebuild the cyclic population dynamics of an empirical data set of a 30-year leaf roller monitoring in Russia. Our analysis focussed on the role of herbivore mortality and host plant food quality, which have a significant effect on T. viridana population dynamics. An additional egg or larvae mortality lowers population density and can lead to selection pressures that favour individuals with higher growth rate. This increased population growth rate can not only compensate the additional mortality, but also can lead to higher average moth abundances in subsequent generations. Furthermore, we analysed the effect of inter- and intraspecific variation in host plant quality on herbivore population dynamics and the spatial distribution of abundance and defoliation patterns. We found significant effects of the qualitative composition of a trees neighbourhood on the herbivore population of the respective tree. Also, the patchy damage patterns observable in reality have been reproduced by the present model. The applicability of the model approach and the putative genetic processes underlying Witting's model are discussed.  相似文献   

11.
A plankton food web model is analysed using interaction parameter values appropriate to the upper mixed layer of the high latitude oceans. The dynamics of this four-variable system are analysed in terms of the dynamics of much simpler two-variable predator–prey subsystems. Thus, the food web's robust, periodic, four-dimensional dynamics are explained by means of two-dimensional spirals and limit cycles. These dynamical subsystems are coupled by means of an omnivore that transfers control of the dynamics between the two predator–prey subsystems. The food web may substantially decouple the predator–prey subsystems so that the oscillating phytoplankton/zooplankton blooms exhibit population collapses when bacterial ‘breathers’ briefly dominate after growing dramatically from low background levels. This regular bloom/breather behaviour becomes benignly chaotic when the system is mildly forced by the annual cycle of the sun's irradiance.  相似文献   

12.
The recent rapid growth of the woodpigeon population in the British Isles is a cause for concern for environmental managers. It is unclear what has driven their increase in abundance. Using a mathematical model, we explored two possible mechanisms, reduced intraspecific competition for food and increased reproductive success. We developed an age-structured hybrid model consisting of a system of ordinary differential equations that describes density-dependent mortality and a discrete component, which represents the birth-pulse. We investigated equilibrium population dynamics using our model. The two hypotheses predict contrasting population age profiles at equilibrium. We adapted the model to examine the impacts of control measures. We showed that an annual shooting season that follows the period of density-dependent mortality is the most effective control strategy because it simultaneously removes adult and juvenile woodpigeons. The model is a first step towards understanding the processes that influence the dynamics of woodpigeon populations.  相似文献   

13.
Effective management and conservation of species, subspecies, or ecotypes require an understanding of how populations are structured in space. We used satellite-tracking locations and hierarchical and fuzzy clustering to quantify subpopulations within the behaviorally different barren-ground caribou (Rangifer tarandus groenlandicus), Dolphin and Union island caribou (R. t. groenlandicus x pearyi), and boreal (R. t. caribou) caribou ecotypes in the Northwest Territories and Nunavut, Canada. Using a novel approach, we verified that the previously recognized Cape Bathurst, Bluenose-West, Bluenose-East, Bathurst, Beverly, Qamanirjuaq, and Lorillard barren-ground subpopulations were robust and that the Queen Maude Gulf and Wager Bay barren-ground subpopulations were organized as individuals. Dolphin and Union island and boreal caribou formed one and two distinct subpopulation, respectively, and were organized as individuals. Robust subpopulations were structured by strong annual spatial affiliation among females; subpopulations organized as individuals were structured by migratory connectivity, barriers to movement, and/or habitat discontinuity. One barren-ground subpopulation used two calving grounds, and one calving ground was used by two barren-ground subpopulations, indicating that these caribou cannot be reliably assigned to subpopulations solely by calving-ground use. They should be classified by annual spatial affiliation among females. Annual-range size and path lengths varied significantly among ecotypes, including mountain woodland caribou (R. t. caribou), and reflected behavioral differences. An east-west cline in annual-range sizes and path lengths among migratory barren-ground subpopulations likely reflected differences in subpopulation size and habitat conditions and further supported the subpopulation structure identified.  相似文献   

14.
Conservation of species at risk of extinction is complex and multifaceted. However, mitigation strategies are typically narrow in scope, an artifact of conservation research that is often limited to a single species or stressor. Knowledge of an entire community of strongly interacting species would greatly enhance the comprehensiveness and effectiveness of conservation decisions. We investigated how camera trapping and spatial count models, an extension of spatial-recapture models for unmarked populations, can accomplish this through a case study of threatened boreal woodland caribou (Rangifer tarandus caribou). Population declines in caribou are precipitous and well documented, but recovery strategies focus heavily on control of wolves (Canis lupus) and pay less attention to other known predators and apparent competitors. Obtaining necessary data on multispecies densities has been difficult. We used spatial count models to concurrently estimate densities of caribou, their predators (wolf, black bear [Ursus americanus], and coyote [Canis latrans]), and alternative prey (moose [Alces alces] and white-tailed deer [Odocoileus virginianus]) from a camera-trap array in a highly disturbed landscape within northern Alberta's Oil Sands Region. Median densities were 0.22 caribous (95% Bayesian credible interval [BCI] = 0.08–0.65), 0.77 wolves (95% BCI = 0.26–2.67), 2.39 moose (95% BCI = 0.56–7.00), 2.64 coyotes (95% BCI = 0.45–6.68), and 3.63 black bears (95% BCI = 1.25–8.52) per 100 km2. (The white-tailed deer model did not converge.) Although wolf densities were higher than densities recommended for caribou conservation, we suggest the markedly higher black bear and coyote densities may be of greater concern, especially if government wolf control further releases these species. Caribou conservation with a singular focus on wolf control may leave caribou vulnerable to other predators. We recommend a broader focus on the interacting species within a community when conserving species.  相似文献   

15.
Irruptive population dynamics appear to be widespread in large herbivore populations, but there are few empirical examples from long time series with small measurement error and minimal harvests. We analyzed an 89-year time series of counts and known removals for pronghorn (Antilocapra americana) in Yellowstone National Park of the western United States during 1918-2006 using a suite of density-dependent, density-independent, and irruptive models to determine if the population exhibited irruptive dynamics. Information-theoretic model comparison techniques strongly supported irruptive population dynamics (Leopold model) and density dependence during 1918-1946, with the growth rate slowing after counts exceeded 600 animals. Concerns about sagebrush (Artemisia spp.) degradation led to removals of >1100 pronghorn during 1947-1966, and counts decreased from approximately 700 to 150. The best models for this period (Gompertz, Ricker) suggested that culls replaced intrinsic density-dependent mechanisms. Contrary to expectations, the population did not exhibit enhanced demographic vigor soon after the termination of the harvest program, with counts remaining between 100 and 190 animals during 1967 1981. However, the population irrupted (Caughley model with a one-year lag) to a peak abundance of approximately 600 pronghorn during 1982-1991, with a slowing in growth rate as counts exceeded 500. Numbers crashed to 235 pronghorn during 1992-1995, perhaps because important food resources (e.g., sagebrush) on the winter range were severely diminished by high densities of browsing elk, mule deer, and pronghorn. Pronghorn numbers remained relatively constant during 1996-2006, at a level (196-235) lower than peak abundance, but higher than numbers following the release from culling. The dynamics of this population supported the paradigm that irruption is a fundamental pattern of growth in many populations of large herbivores with high fecundity and delayed density-dependent effects on recruitment when forage and weather conditions become favorable after range expansion or release from harvesting. Incorporating known removals into population models that can describe a wide range of dynamics can greatly improve our interpretation of observed dynamics in intensively managed populations.  相似文献   

16.
Lichens are an important component of the boreal forest, where they are long lived, tend to accumulate in older stands, and are a major food source for the threatened woodland caribou (Rangifer tarandus caribou). To be fully sustainable, silvicultural practices in the boreal forest must include the conservation of ecological integrity. Dominant forest management practices, however, have short‐term negative effects on lichen diversity, particularly the application of herbicides. To better understand the long‐term effects of forest management, we examined lichen regeneration in 35 mixed black spruce (Picea mariana) and jack pine (Pinus banksiana) forest stands across northern Ontario to determine recovery following logging and postharvest silvicultural practices. Our forest stands were 25–40 years old and had undergone 3 common sivilcultural treatments that included harvested and planted; harvested, planted, and treated with N‐[phosphonomethyl] glycine (glyphosate); and harvested, planted, and treated with 2,4‐dichlorophenoxyacetic acid (2,4‐D). Forest stands with herbicide treatments had lower lichen biomass and higher beta and gamma diversity than planted stands that were not treated chemically or control stands. In northwestern Ontario, planted stands that were not treated chemically had significantly greater (p < 0.05) alpha diversity than stands treated with herbicides or control stands. Our results show that common silvicultural practices do not emulate natural disturbances caused by wildfires in the boreal forest for the lichen community. We suggest a reduction in the amount of chemical application be considered in areas where lichen biomass is likely to be high and where the recovery of woodland caribou is an objective. Conservación de Líquenes en Bosques Boreales Manejados Intensivamente  相似文献   

17.
The presence of prey heterogeneity and weakly interacting prey species is frequently viewed as a stabilizer of predator-prey dynamics, countering the destabilizing effects of enrichment and reducing the amplitude of population cycles. However, prior model explorations have largely focused on long-term, dynamic attractors rather than transient dynamics. Recent theoretical work shows that the presence of prey that are defended from predation can have strongly divergent effects on dynamics depending on time scale: prey heterogeneity can counteract the destabilizing effects of enrichment on predator-prey dynamics at long time scales but strongly destabilize systems during transient phases by creating long periods of low predator/prey abundance and increasing extinction probability (an effect that is amplified with increasing enrichment). We tested these general predictions using a planktonic system composed of a zooplankton predator and multiple algal prey. We first parameterized a model of our system to generate predictions and tested these experimentally. Our results qualitatively supported several model predictions. During transient phases, presence of defended algal prey increased predator extinctions at low and high enrichment levels compared to systems with only a single edible prey. This destabilizing effect was moderated at higher dilution rates, as predicted by our model. When examining dynamics beyond initial oscillations, presence of the defended prey increased predator-prey temporal variability at high nutrient enrichment but had no effect at low nutrient levels. Our results highlight the importance of considering transient dynamics when assessing the role of stabilizing factors on the dynamics of food webs.  相似文献   

18.
F. Rossi  C. Lardicci 《Marine Biology》2002,140(6):1129-1138
The importance of changes in nutritive value of the sediment in regulating the dynamics of the small deposit-feeding polychaete Streblospio shrubsolii (Buchanam, 1890) was examined. First, fluctuations in the population dynamics of S. shrubsolii and in the nutritive content of the sediment were studied on a seasonal scale. Subsequently, a manipulative field experiment was used to test the hypothesis that, in summer, availability of food regulates aspects of the population dynamics of S. shrubsolii. In summer 1997, sharp increases in protein concentrations and in the number of individuals of S. shrubsolii were found compared to all the other seasons. Densities of S. shrubsolii also showed an increase in the subsequent season. Newly recruited juveniles (19-31 setigers) were abundant in summer and autumn 1997, whereas the number of juveniles (32-42 setigers) increased in autumn 1997. Large numbers of adults were found in summer 1997. Significant negative correlations occurred in summer 1997 between the concentrations of proteins and the total number of individuals, the number of newly recruited juveniles and the density of adults. No differences in densities of juveniles, adults or total number of individuals were found among plots before starting the experiment. After 20 days of experimental enrichment, proteins showed a tendency to increase. After 40 days of enrichment, the total number of individuals was significantly greater in the enriched plots. Large numbers of newly recruited larvae and postlarval adults were found in the enriched plots. The experiment corroborated the model that the growth of population was limited by the availability of food in summer. Thus, in this season, patches of food could have a fundamental role in determining the population dynamics of small deposit-feeders under natural conditions and over short time scales.  相似文献   

19.
Systematic conservation plans have only recently considered the dynamic nature of ecosystems. Methods have been developed to incorporate climate change, population dynamics, and uncertainty in reserve design, but few studies have examined how to account for natural disturbance. Considering natural disturbance in reserve design may be especially important for the world's remaining intact areas, which still experience active natural disturbance regimes. We developed a spatially explicit, dynamic simulation model, CONSERV, which simulates patch dynamics and fire, and used it to evaluate the efficacy of hypothetical reserve networks in northern Canada. We designed six networks based on conventional reserve design methods, with different conservation targets for woodland caribou habitat, high-quality wetlands, vegetation, water bodies, and relative connectedness. We input the six reserve networks into CONSERV and tracked the ability of each to maintain initial conservation targets through time under an active natural disturbance regime. None of the reserve networks maintained all initial targets, and some over-represented certain features, suggesting that both effectiveness and efficiency of reserve design could be improved through use of spatially explicit dynamic simulation during the planning process. Spatial simulation models of landscape dynamics are commonly used in natural resource management, but we provide the first illustration of their potential use for reserve design. Spatial simulation models could be used iteratively to evaluate competing reserve designs and select targets that have a higher likelihood of being maintained through time. Such models could be combined with dynamic planning techniques to develop a general theory for reserve design in an uncertain world.  相似文献   

20.
Recent studies have reported that earthworm invasions alter native communities and impact nutrient cycling in terrestrial ecosystems. We developed a simulation model to evaluate the potential impacts of earthworm invasions on carbon dynamics, taking into consideration earthworm feeding strategies and priming effects on the microorganisms through their casting activities. Responses of carbon stocks (forest litter, soil organic matter, microbial biomass and earthworm populations) and carbon fluxes (litter decomposition, earthworm consumption, and microbial respiration) were used to evaluate an earthworm invasion of a forest ecosystem. Data from a northern temperate forest (Arnot Forest, New York) were adapted for model calibration and evaluation. Simulation results suggest that the impact and outcome of earthworm invasions are affected by pre-invasion resource availability (litter and soil organic matter), invasive earthworm assemblages (particularly feeding strategy), and invasion history (associated with earthworm population dynamics). The abovementioned factors may also determine invasion progress of earthworm species. The accuracy of the model could be improved by the addition of environmental modules (e.g., soil water regimes), precise parameters accounting for individual species attributes under different environmental conditions (e.g. utilization ability of different types of food resources), as well as earthworm population dynamics (size and structure) and interactions with predators and other invasive/indigenous species during the invasion progress. Such an earthworm invasion model could provide valuable evaluation of the complicated responses of carbon dynamics to earthworm invasions in a range of forest ecosystems, particularly under global change scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号