首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The purpose of this study was to assess the effectiveness of a new generation of high-volume, ceiling-mounted high-efficiency particulate air (HEPA)-ultraviolet (UV) air filters (HUVAFs) for their ability to remove or inactivate bacterial aerosol. In an environmentally controlled full-scale laboratory chamber (87 m3), and an indoor therapy pool building, the mitigation ability of air filters was assessed by comparing concentrations of total bacteria, culturable bacteria, and airborne endotoxin with and without the air filters operating under otherwise similar conditions. Controlled chamber tests with pure cultures of aerosolized Mycobacterium parafortuitum cells showed that the HUVAF unit tested provided an equivalent air-exchange rate of 11 hr?1. Using this equivalent air-exchange rate as a design basis, three HUVAFs were installed in an indoor therapy pool building for bioaerosol mitigation, and their effectiveness was studied over a 2-year period. The HUVAFs reduced concentrations of culturable bacteria by 69 and 80% during monitoring periods executed in respective years. The HUVAFs reduced concentrations of total bacteria by 12 and 76% during the same monitoring period, respectively. Airborne endotoxin concentrations were not affected by the HUVAF operation.  相似文献   

2.
In the event of a short-term, large-scale toxic chemical release to the atmosphere, shelter-in-place (SIP) may be used as an emergency response to protect public health. We modeled hypothetical releases using realistic, empirical parameters to explore how key factors influence SIP effectiveness for single-family dwellings in a residential district. Four classes of factors were evaluated in this case study: (a) time scales associated with release duration, SIP implementation delay, and SIP termination; (b) building air-exchange rates, including air infiltration and ventilation; (c) the degree of sorption of toxic chemicals to indoor surfaces; and (d) the shape of the dose–response relationship for acute adverse health effects. Houses with lower air leakage are more effective shelters, and thus variability in the air leakage of dwellings is associated with varying degrees of SIP protection in a community. Sorption on indoor surfaces improves SIP effectiveness by lowering the peak indoor concentrations and reducing the amount of contamination in the indoor air. Nonlinear dose–response relationships imply substantial reduction in adverse health effects from lowering the peak exposure concentration. However, if the scenario is unfavorable for indefinite sheltering (e.g. sheltering in leaky houses for protection against a nonsorbing chemical with a linear dose–response), the community must implement SIP without delay and exit from shelter when it first becomes safe to do so. Otherwise, the community can be subjected to even greater risk than if they did not take shelter indoors.  相似文献   

3.
Traditional and modern techniques for bioaerosol enumeration were used to evaluate the relative efficiency of gaseous chlorine dioxide (ClO2) in reducing the indoor microbial contamination under field and laboratory conditions. The field study was performed in a highly microbially contaminated house, which had had an undetected roof leak for an extended period of time and exhibited large areas of visible microbial growth. Air concentrations of culturable fungi and bacteria, total fungi determined by microscopic count and polymerase chain reaction (PCR) assays, endotoxin, and (1 --> 3)-beta-D-glucan were determined before and after the house was tented and treated with ClO2. The laboratory study was designed to evaluate the efficiency of ClO2 treatment against known concentrations of spores of Aspergillus versicolor and Stachybotrys chartarum on filter paper (surrogate for surface treatment). These species are commonly found in damp indoor environments and were detected in the field study. Upon analysis of the environmental data from the treated house, it was found that the culturable bacteria and fungi as well as total count of fungi (as determined by microscopic count and PCR) were decreased at least 85% after the ClO2 application. However, microscopic analyses of tape samples collected from surfaces after treatment showed that the fungal structures were still present on surfaces. There was no statistically significant change in airborne endotoxin and (1 --> 3)-beta-D-glucan concentration in the field study. The laboratory study supported these results and showed a nonsignificant increase in the concentration of (1 --> 3)-beta-D-glucan after ClO2 treatment.  相似文献   

4.
Bacterial cell envelope components are widely distributed in airborne dust, where they act as inflammatory agents causing respiratory symptoms. Measurements of these agents and other environmental factors are assessed in two elementary schools in a southeastern city in the United States. Muramic acid (MA) was used as a marker for bacterial peptidoglycan (PG), and 3-hydroxy fatty acids (3-OH FAs) were used as markers for Gram-negative bacterial lipopolysaccharide (LPS). Culturable bacteria were collected using an Andersen sampler with three different culture media. In addition, temperature (T), relative humidity (RH), and CO2 were continuously monitored. Concentrations of airborne MA and 3-OH FAs were correlated with total suspended particulate (TSP) levels. Outdoor MA (mean = 0.78-1.15 ng/m3) and 3-OH FA levels (mean = 2.19-2.18 ng/m3) were similar at the two schools. Indoor concentrations of airborne MA and 3-OH FAs differed significantly between schools (MA: 1.44 vs. 2.84 ng/m3; 3-OH FAs: 2.96 vs. 4.57 ng/m3). Although indoor MA levels were low, they were significantly related to teachers' perception of the severity of indoor air quality (IAQ) problems in their classrooms. Concentrations of CO2 correlated significantly with all bacteria measurements. Because CO2 levels were related to the number of occupants and the ventilation rates, these findings are consistent with the hypothesis that the children and teachers are sources of bacterial contamination. Many culturable bacteria present in indoor air are opportunistic organisms that can be infectious for compromised individuals, while both culturable and nonculturable bacterial remnants act as environmental toxins for both healthy and compromised individuals. Measuring the "total bacteria load" would be most accurate in assessing the biotoxicity of indoor air. Chemical analysis of MA and 3-OH FAs, when coupled with the conventional culture method, provides complementary information for assessing biocontamination of indoor air.  相似文献   

5.
Air-exchange efficiency is widely used to indicate the ventilation effect and indoor air quality in ventilated rooms. However, it does not take occupant distribution in the room into account and is thus limited. In this paper, a revised air-exchange efficiency (occupant air-exchange efficiency) that differentiates between different zones by considering different occupancy in each zone is developed. Results from studies of a large-space ventilation case, a personalized ventilation case, and a displacement ventilation case show that occupant air-exchange efficiency can better be used to evaluate the ventilation effect of a room.  相似文献   

6.
Abstract

Air-exchange efficiency is widely used to indicate the ventilation effect and indoor air quality in ventilated rooms. However, it does not take occupant distribution in the room into account and is thus limited. In this paper, a revised air-exchange efficiency (occupant air-exchange efficiency) that differentiates between different zones by considering different occupancy in each zone is developed. Results from studies of a large-space ventilation case, a personalized ventilation case, and a displacement ventilation case show that occupant air-exchange efficiency can better be used to evaluate the ventilation effect of a room.  相似文献   

7.
Basing on the material emission data obtained in a test chamber, chemical mass balance (CMB) was used to assess the source apportionment of volatile organic compound (VOC) concentrations in three newly built timber frame houses. CMB has been proven to be able to discriminate the source contributions for two contrasted environmental conditions (with and without ventilation). The shutdown of the ventilation system caused an increase in the VOC concentrations due to the increased contribution of indoor surface materials like the door material and furniture explaining together over 65% of total VOCs. While the increase in formaldehyde concentration is mainly due to furniture (contribution of 70%), the increase in α-pinene concentration is almost exclusively attributable to the emission of door material (up to 84%). The apportionment of VOC source contributions appears as highly dependent on the position of source materials in the building (surface materials or internal materials) and the ventilation conditions explaining that the concentrations of compounds after the shutdown of ventilation system do not increase in equivalent proportion. Knowledge of indoor sources and its contributions in real conditions may help in the selection of materials and in the improvement of construction operations to reduce the indoor air pollution.  相似文献   

8.
Abstract

Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.  相似文献   

9.
This study assessed bacterial concentrations in indoor air at 25 underground railway stations in Seoul, Korea, and investigated various related factors including the presence of platform screen doors (PSD), depth of the station, year of construction, temperature, relative humidity, and number of passengers. A total of 72 aerosol samples were collected from all the stations. Concentrations of total airborne bacteria (TAB) ranged from not detected (ND) to 4997 CFU m?3, with an overall geometric mean (GM) of 191 CFU m?3. Airborne bacteria were detected at 23 stations (92%) and Gram-negative bacteria (GNB) were detected at two stations (8%). TAB concentrations of four stations (16%) exceeded 800 CFU m?3, the Korea indoor bio-aerosol guideline. The results of the study showed that TAB concentrations at the stations without PSD showed higher TAB concentrations than those with PSD, though not at statistically significant levels. TAB concentrations of deeper stations revealed significantly higher levels than those of shallower stations. Based on this study, it is recommended that mitigation measures be applied to improve the indoor air quality (IAQ) of underground railway stations in Seoul, with focused attention on deeper stations.  相似文献   

10.
For a large-scale, unanticipated release of a toxic chemical into the atmosphere, it is recommended for nearby populations to shelter indoors. Two new metrics to quantify the community-scale effectiveness of shelter-in-place (SIP) are introduced. The casualty reduction factor (CRF) quantifies the expected reduction in casualties if SIP is performed. The safety-factor multiplier (SFM) quantifies the extent of toxic-load reduction for individuals in each exposed building. In this paper, idealized models are combined to explore the relationships among important input parameters and the SIP-effectiveness metrics. A Gaussian plume model predicts ambient concentrations for a hypothetical release event. A box model predicts indoor concentrations in buildings. A toxic-load model links exposure to health consequences. SIP effectiveness varies significantly with the toxic-load exponent, m, which characterizes the dose–response relationship. Another influential variable is a dimensionless time scale, ξ, equal to the release duration multiplied by the building air-exchange rate. Other factors that influence SIP effectiveness include the magnitude of the release relative to the toxicity of the pollutant, atmospheric transport and dispersion rates, and punctual termination of SIP once the toxic cloud has passed. SIP can be effective for short-duration releases (ξ<1), especially for chemicals with m of 2–3 or higher. If m=1, punctual termination at the end of the event can be important to ensure SIP effectiveness.  相似文献   

11.
This study compares an indoor-outdoor air-exchange mass balance model (IO model) with a chemical mass balance (CMB) model. The models were used to determine the contribution of outdoor sources and indoor resuspension activities to indoor particulate matter (PM) concentrations. Simultaneous indoor and outdoor measurements of PM concentration, chemical composition, and air-exchange rate were made for five consecutive days at a single-family residence using particle counters, nephelometers, and filter samples of integrated PM with an aerodynamic diameter of less than or equal to 2.5 microm (PM2.5) and PM with an aerodynamic diameter of less than or equal to 5 microm (PM5). Chemical compositions were determined by inductively coupled plasma mass-spectrometry. During three high-activity days, prescribed activities, such as cleaning and walking, were conducted over a period of 4-6 hr. For the remaining two days, indoor activities were minimal. Indoor sources accounted for 60-89% of the PM2.5 and more than 90% of the PM5 for the high-activity days. For the minimal-activity days, indoor sources accounted for 27-47% of PM2.5 and 44-60% of the PM5. Good agreement was found between the two mass balance methods. Indoor PM2.5 originating outdoors averaged 53% of outdoor concentrations.  相似文献   

12.
Abstract

Volatile organic compounds (VOCs) are a major concern for indoor air pollution because of the impacts on human health. In recent years, interest has increased in the development and design of activated carbon filters for removing VOCs from indoor air. Although extensive information is available on sources, concentrations, and types of indoor VOCs, there is little or no information on the performance of indoor air adsorption systems for removing low concentrations of primary VOCs. Filter designs need to consider various factors such as empty bed contact time, humidity effects, competitive adsorption, and feed concentration variations, whereas adsorption capacities of the indoor VOCs at the indoor concentration levels are important parameters for filter design. A preliminary assessment of the feasibility of using adsorption filters to remove low concentrations of primary VOCs can be performed. This work relates the information (including VOC classes in indoor air, the typical indoor concentrations, and the adsorption isotherms) with the design of a particular adsorbent/adsorbates system. As groundwork for filter design and development, this study selects the primary VOCs in indoor air of residences, schools, and offices in different geographical areas (North America, Europe, and Asia) on the basis of occurrence, concentrations, and health effects. Activated carbon fiber cloths (ACFCs) are chosen as the adsorbents of interest. It is demonstrated that the isotherm of a VOC (e.g., toluene on the ACFC) at typical indoor concentrations—parts per billion by volume (ppbv) level—is different than the isotherm at parts per million by volume (ppmv) levels reported in the publications. The isotherms at the typical indoor concentrations for the selected primary VOCs are estimated using the Dubinin–Radushkevitch equation. The maximum specific throughput for an indoor VOC removal system to remove benzene is calculated as a worst-case scenario. It is shown that VOC adsorption capacity is an important indicator of a filter’s lifetime and needs to be studied at the appropriate concentration range. Future work requires better understanding of the realistic VOC concentrations and isotherms in indoor environments to efficiently utilize adsorbents.  相似文献   

13.
Organic vapors are emitted to the indoor air from a variety of consumer products and building materials. The U.S. EPA Is evaluating the emission characteristics from such sources using small environmental test chambers. Emission rate data are presented, and the effect of temperature and air exchange rate are discussed. Models are used to account for the Impact of chamber concentration and “wall effects” on emission rates. Indoor concentrations of specific organlcs emitted from a silicone caulk are estimated from the chamber test data.  相似文献   

14.
Abstract

Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photo-catalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr?1, and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and form-aldehyde found in this study ranged from 0.381 to 1.01 hr?1 under different total air change rates, from 0.34 to 0.433 hr?1 under different RH, and from 0.381 to 0.433 hr?1 for different photocatalytic filters.  相似文献   

15.
Abstract

Submicron particles play a major role in soiling processes and contribute to corrosion, current leakage and shorts in electronic equipment. For more than a year, optical particle counters have been used to continuously measure the concentrations of submicron particles at a telecommunications facility in Southern California. Separate instruments have simultaneously sampled at four locations: the outdoor air intake, immediately upstream of the HVAC filters, immediately downstream of the HVAC filters, and inside the office. The indoor concentrations can be explained in the context of a one-compartment mass balance model. Key parameters in the model (e.g., the air exchange rate) were monitored throughout the sampling period. In the latter part of this study, the particle counters were used as feedback elements in the HVAC system. An estimate of the concentration of indoor submicron particles, based on measurements of outdoor submicron particles, has been used as a control variable. When this variable exceeds a preset value, the outdoor air damper is partially closed, reducing the amount of outdoor air entering the building. That is, the position of the damper is based on the concentration of outdoor particles as well as the outdoor temperature. As a consequence, the average indoor concentration of submicron particles has been significantly reduced within this facility.  相似文献   

16.
Microbial particles can readily be released into the air from different types of man-made sources such as waste operations. Microbiological emissions from different biological sources and their dispersion may be an issue of concern for area planning and for nearby residents. This study was designed to determine the concentrations and diversity of microbiological emissions from four different man-made source environments: waste center with composting windrows, sewage treatment plant, farming environment, and cattle manure spreading. Samples of airborne particles were collected onto polyvinyl chloride filters at three distances along the prevailing downwind direction, from each source environment during a period of approximately 1 week. These samples were analyzed for 13 species or assay groups of fungi, bacterial genus Streptomyces, and Gram-positive and -negative bacteria using quantitative polymerase chain reaction (PCR). Samples for determining the concentrations of viable fungi and bacteria were collected from all environments using a six-stage impactor. The results show that there were variations in the microbial diversity between the source environments. Specifically, composting was a major source for the fungal genera Aspergillus and Penicillium, particularly for Aspergillus fumigatus, and for the bacterial genus Streptomyces. Although the microbial concentrations in the sewage treatment plant area were significantly higher than those at 50 or 200 m distance from the plant area, in the farming environment or cattle manure spreading area, no significant difference was observed between different distances from the source. In summary, elevated concentrations of microbes that differ from background can only be detected within a few hundred meters from the source. This finding, reported earlier for culturable bacteria and fungi, could thus be confirmed using molecular methods that cover both culturable and nonculturable microbial material.  相似文献   

17.
In this study, the culturability of indoor and outdoor airborne fungi was determined through long-term sampling (24-h) using a Button Personal Inhalable Aerosol Sampler. The air samples were collected during three seasons in six Cincinnati area homes that were free from moisture damage or visible mold. Cultivation and total microscopic enumeration methods were employed for the sample analysis. The geometric means of indoor and outdoor culturable fungal concentrations were 88 and 102 colony-forming units (CFU) m(-3), respectively, with a geometric mean of the I/O ratio equal to 0.66. Overall, 26 genera of culturable fungi were recovered from the indoor and outdoor samples. For total fungal spores, the indoor and outdoor geometric means were 211 and 605 spores m(-3), respectively, with a geometric mean of I/O ratio equal to 0.32. The identification revealed 37 fungal genera from indoor and outdoor samples based on the total spore analysis. Indoor and outdoor concentrations of culturable and total fungal spores showed significant correlations (r = 0.655, p<0.0001 and r = 0.633, p<0.0001, respectively). The indoor and outdoor median viabilities of fungi were 55% and 25%, respectively, which indicates that indoor environment provides more favorable survival conditions for the aerosolized fungi. Among the seasons, the highest indoor and outdoor culturability of fungi was observed in the fall. Cladosporium had a highest median value of culturability (38% and 33% for indoor and outdoor, respectively) followed by Aspergillus/Penicillium (9% and 2%) among predominant genera of fungi. Increased culturability of fungi inside the homes may have important implications because of the potential increase in the release of allergens from viable spores and pathogenicity of viable fungi on immunocompromised individuals.  相似文献   

18.
Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.  相似文献   

19.
As part of an energy conservation program recently implemented by the Bell System, fans in many telephone equipment buildings now operate only when necessary to bring the temperature within allowable limits, rather than continuously. In the study reported here the effects of fan operation on indoor-outdoor dust relationships were monitored at 2 representative telephone offices. Automatic dichotomous samplers were used to collect fine and coarse aerosol particles inside telephone equipment buildings at Wichita, KS and Lubbock, TX. At both sites, outdoor samples (roof top) were collected at the same time as the indoor samples. During the tests the building fans were repetitively cycled between 2-week intervals of continuous fan operation and 2-week intervals of intermittent fan operation. The indoor dust concentrations typically increased when the fans were off. The results indicate that this increase was due to loss of constant filtration, but not due to loss of building pressurlzation (i.e., filtration of the recirculated air is largely responsible for the lower dust levels when the fans are running continuously). An expression is derived for the relative dust increase when the building fans are switched off. Among other factors, the relative increase is directly proportional to the efficiency of the building filters and to the rate at which air is recirculated through them. The present findings can be extended to similar buildings.  相似文献   

20.
Volatile organic compounds (VOCs) emitted from surface coatings have caused growing public concern for air quality. Even the low-emitted VOC impact from water-based paints on indoor air quality in urban areas has caused concern. This paper presents experimental data using a mathematical model to simulate dynamic VOC emissions from water-based paints that is based on mass transfer and molecular diffusion theories. A series of field-analogous experiments were carried out to continuously measure the VOCs emitted from two typical water-based paints using a gas chromatography-flame-ionization detector monitor in an artificial wind tunnel system. In the study cases, the mass flux of VOCs emitted from the water-based paints was up to 50 microg/m2sec. It was found that the time needed to completely emit VOCs from water-based paints is just hundreds of seconds. However, the order of magnitude of the VOC emission rate from water-based paints is not lower than that from some dry building materials and solvent-based paints. The experimental data were used to produce a useful semiempirical correlation to estimate the VOC emission rates for water-based paints. This correlation is valid under appropriate conditions as suggested by this work with a statistical deviation of +/- 7.6%. With this correlation, it seems feasible to predict the dynamic emission rates for VOCs during a painting process. This correlation is applicable for assessing the hazardous air pollutant impact on indoor air quality or for environmental risk assessment. Associated with the dynamic VOC emission characterization, the air-exchange rate effect on the VOC emission rates is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号