首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhan M  Yang X  Xian Q  Kong L 《Chemosphere》2006,63(3):378-386
The photodegradation of endocrine disrupter bisphenol A (BPA) in the presence of natural humic substances (HS) under simulated solar irradiation was studied. BPA underwent slow direct photolysis in neutral pure water, but rapid photosensitized degradation in four kinds of HS, following pseudo-first-order reaction. Reactive oxygen species (ROS) formed from HS were determined, including OH, (1)O(2) and H(2)O(2). The enhancement of BPA degradation by adding Fe(III) was primarily attributed to the oxidation of OH produced from photo-Fenton-like reaction. And the joint effects of HS and nitrate ions coexisting on BPA degradation appeared to depend on respective concentration levels. The effects of dissolved oxygen suggested that the energy transfer between excited state of SRFA and NOFA likely occurred, while the abstraction of phenolic hydrogen atom to reactive triplet state of NOHA possibly took place. Based on the structural analyses of main intermediates and degradation products of BPA detected by GC-MS, the possible photodegradation pathways were proposed, involving the alky cleavage, alkyl oxidation and OH addition. This study gave a better understanding for the photochemical transformation of BPA induced by ROS generated from natural water composition under sunlight irradiation.  相似文献   

2.
Background For their high photoreactivity, Fe(III)-carboxylate complexes are important sources of H2O2 for some atmospheric and surface waters. Citrate is one kind of carboxylate, which can form complexes with Fe(III). In our previous study, we have applied Fe(III)-citrate complexes to degrade and decolorize dyes in aqueous solutions both under UV light and sunlight. Results have shown that carboxylic acids can promote the photodegradation efficiency. It is indicated that the photolysis of Fe(III)-citrate complexes may cause the formation of some reactive species (e. g. H2O2 and ·OH). This work is attempted to quantify hydroxyl radicals generated in the aqueous solution containing Fe(III)-citrate complexes and to interpret the photoreactivity of Fe(III)-citrate complexes for degrading organic compounds. Methods By using benzene as the scavenger to produce phenol, the photogeneration of ·OH in the aqueous solution containing Fe (III)-citrate complexes was determined by HPLC. Results and Discussion In the aqueous solution containing 60.0/30.0 mM Fe(III)/citrate and 7.0 mM benzene at pH 3.0, 96.66 mM ·OH was produced after irradiation by a 250W metal halide light (l ≥ 313 nm) for 160 minutes. Effects of initial pH value and concentrations of Fe(III) and citrate on ·OH radical generation were all examined. The results show that the greatest photoproduction of ·OH in the aqueous solution (pH ranged from 3.0 to 7.0) was at pH 3.0. The photoproduction of ·OH increased with increasing Fe(III) or citrate concentrations. Conclusion In the aqueous solutions containing Fe(III)-citrate complexes, ·OH radicals were produced after irradiation by a 250W metal halide light. It can be concluded that Fe(III)-citrate complexes are important sources of ·OH radicals for some atmospheric and surface waters. Recommendations and Outlook It is believed that the photolysis of Fe(III)-citrate complexes in the presence of oxygen play an important role in producing ·OH both in atmospheric waters and surface water where high concentrations of ferric ions and citrate ions exist. The photoproduction of ·OH has a high oxidizing potential for the degradation of a wide variety of natural and anthropogenic organic and inorganic substances. We can use this method for toxic organic pollutants such as organic dyes and pesticides.  相似文献   

3.
Based on available literature data of [NO2 ], steady-state [·OH], and ·OH generation rate upon nitrate photolysis in environmental aqueous samples under sunlight, the steady-state [·NO2], could be calculated. Interestingly, one to two orders of magnitude more ·NO2 would be formed in photochemical processes in atmospheric water droplets compared to transfer from the gas phase. The relative importance of nitrite oxidation compared to nitrate photolysis as an ·NO2 source would be higher in atmospheric than in surface waters. The calculated levels of ·NO2 could lead to substantial transformation of phenol into nitrophenols in both atmospheric and surface waters.  相似文献   

4.
天然水体中亚硝酸根和硝酸根的光化学研究进展   总被引:1,自引:0,他引:1  
综述了近年来亚硝酸根和硝酸根 (NO-2 /NO-3 )在天然水体中的环境光化学研究进展。重点介绍了NO-2 /NO-3 光解生成活性氧 (如羟基 )的机理及其影响因素 ,探讨了NO-2 /NO-3 光解引发天然水体中有机物反应的环境意义 ,并据此提出了本领域今后的研究方向  相似文献   

5.
The turnover of natural organic matter (NOM) in soils results in CO(2) production and the formation of various organic carbon pools of different stabilities. These humification products are reaction partners for binding and remobilisation of pesticides in soil. Research is needed to characterise soil organic carbon pools to interpret the functioning of soils with respect to storage, filter, buffer and degradation potentials. The experimental set ups must be embedded in a time and space perspective of organic carbon dynamics and anthropogenic impact and must deal with mechanisms taking place at the molecular level (structure activity relationships) and the system level (pool characteristics and reactivities). The sound prediction of these mechanisms is still a matter of scientific debate because the structure of NOM and its reaction potential is still not understood.  相似文献   

6.

Purpose  

Gamma ray irradiation is considered as an effective way to degrade diclofenac. However, due to the extensive coexisting substances in natural waters, the use of gamma ray irradiation for degradation is often influenced by multiple factors. The various factors that affect degradation efficiency, such as initial diclofenac concentration, initial pH, and the concentration of the additives including H2O2 (·OH radical promoter), CH3OH (·OH radical scavenger), thiourea (·OH, H·, and eaq scavenger), humic acid, and NO3 (coexisting substances in natural waters), are investigated. Furthermore, possible intermediate products are identified and corresponding transformation pathways are proposed.  相似文献   

7.
The photolysis of caffeine was studied in solutions of fulvic acid isolated from Suwannee River, GA (SRFA) and Old Woman Creek Natural Estuarine Research Reserve, OH (OWCFA) with different chemical amendments (nitrate and iron). Caffeine degrades slowly by direct photolysis (>170 h in artificial sunlight), but we observed enhanced photodegradation in waters containing the fulvic acids. At higher initial concentrations (10 μM) the indirect photolysis of caffeine occurs predominantly through reaction with the hydroxyl radical (OH) generated by irradiated fulvic acids. Both rate constant estimates based upon measured OH steady-state concentrations and quenching studies using isopropanol corroborate the importance of this pathway. Further, OH generated by irradiated nitrate at concentrations present in wastewater effluent plays an important role as a photosensitizer even in the presence of fulvic acids, while the photo-Fenton pathway does not at neutral or higher pH. At lower initial concentrations (0.1 μM) caffeine photolysis reactions proceed even more quickly in fulvic acid solutions and are influenced by both short- and long-lived reactive species. Studies conducted under suboxic conditions suggest that an oxygen dependent long-lived radical e.g., peroxyl radicals plays an important role in the degradation of caffeine at lower initial concentration.  相似文献   

8.
Goal, Scope and Background Within the non-methane hydrocarbons, alkanes constitute the largest fraction of the anthropogenic emissions of volatile organic compounds. For the case of cyclic alkanes, tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atom reaction rate constants are generally one order of magnitude larger than those of OH. In the present work, the reaction of cyclooctane with Cl atoms has been studied within the temperature range of 279–333 K. Methods The kinetic study has been carried out using the fast flow tube technique coupled to mass spectrometry detection. The reaction has been studied under low pressure conditions, p=1 Torr, with helium as the carrier gas. Results The measured room temperature rate constant is very high, k=(2.63±0.54)×10−10 cm3molecule−1s−1, around 20 times larger than that for the corresponding OH reaction. We also report the results of the rate coefficients obtained at different temperatures: k = (3.5±1.2)×10−10 exp[(−79±110)/T] cm3 molecule−1 s−1 within the range of 279–333 K. This reaction shows an activation energy value close to zero. Discussion Quantitative formation of HCl has been observed, confirming the mechanism through H-atom abstraction. The reactivity of cyclic alkanes towards Cl atoms is clearly dependent on the number of CH2 groups in the molecule, as is shown by the increase in the rate constant when the length of the organic chain increases. This increase is very high for the small cyclic alkanes and it seems that the reactions are approaching the collision-controlled limit for cyclohexane and cyclooctane. Conclusions These results show that gas-phase reaction with Cl in marine or coastal areas is an efficient sink (competing with the gas phase, OH initiated degradation) for the Earth’s emissions of cyclooctane, with a Cl-based lifetime ranging from 11 to 2000 hours, depending on the location and time of day. Recommendations and Perspectives Cl and OH fast reactions with cyclooctane are expected to define the lifetime of cyclooctane emissions to the atmosphere. The degradation of cyclooctane occurs in a short period of time and consequently (under conditions of low atmospheric mass transport), close to the emission sources enabling a significant contribution to local effects, like the formation of photochemical smog. ESS-Submission Editor: Prof. Dr. Gerhard Lammel (lammel@recetox.muni.cz)  相似文献   

9.

Purpose  

The oxone process for azo dye decolorization has drawbacks such as difficulties with reuse, risks of secondary pollution, and high costs associated with UV irradiation. This study aims to explore the use of oxone for decolorization in the absence of catalyst and under natural sunlight conditions (i.e., oxone/natural sunlight system) and evaluate the impacts of operating parameters (reagent dosage, initial methyl orange (MO) concentration, and initial pH) and coexisting substances (humic acid, NO3, metal ions) on the system’s decolorization efficiency.  相似文献   

10.
腐殖酸和铁对阿特拉津光降解影响的研究   总被引:2,自引:0,他引:2  
为考察除草剂在水体中的自净性能,对模拟太阳光(λ> 290 nm)下腐殖酸和铁元素对阿特拉津的光化学降解进行了研究。结果表明,单独辐照阿特拉津几乎不降解。在分别加入3、5和10 mg/L的腐殖酸时,阿特拉津的降解率分别为34.36 %、40.74%和15.66 %;在Fe(Ⅲ)投加量从0.01 mmol/L增加到0.2 mmol/L时,阿特拉津的降解率从24.36 %增加到34.97 %。而在当腐殖酸与铁共存时,阿特拉津降解率则进一步提高。紫外可见光谱和荧光光谱均表明,腐殖酸-铁络合物的形成及其光化学作用,促进了阿特拉津的降解。  相似文献   

11.
Yan M  Wang D  Shi B  Wang M  Yan Y 《Chemosphere》2007,69(11):1695-1702
Although ozone is widely used as a pre-oxidant before coagulation in water treatment, the effect of pre-ozonation on optimized coagulation for removal of particle and natural organic matter (NOM) is still not fully understood. In this paper, pilot-scale investigation was conducted to examine the impact of pre-ozonation on coagulation for particle and NOM removal. Changes in the particle and NOM distributions were characterized by various methods, including laser light granularity system, particle counter, ultrafiltration, and resin absorbent fractionation. A novel composite flocculant–HPAC was compared with the traditional ferric chloride coagulant in terms of coagulation efficiency under the influence of pre-ozonation. Typical micro-polluted North China surface water was used for pilot coagulation tests. The results show that the effect of pre-ozonation on coagulation is associated with the dosage of ozone, coagulant type, and water contamination characteristics. For FeCl3, pre-ozonation acts as a coagulation aid at low dosage (1.0 mg L−1 O3) for turbidity and UV254 removal; while at higher dosage (2.0 mg L−1 O3), pre-ozonation is detrimental to UV254 removal although it is still beneficial for turbidity removal. In the case of composite flocculant–HPAC, pre-ozonation demonstrates negligible influence on both turbidity and UV254 removal. Ozone can simultaneously aggregate fine particles and break down large ones, making them more mineralized and easier to remove. NOM with intermediate molecular weight and hydrophobic neutral property increases at lower ozone dosage, favoring removal by coagulation. At higher ozone dosages, NOM becomes more hydrophilic and its molecular weight becomes smaller, decreasing NOM removal.  相似文献   

12.
The ubiquitous dissolved organic matter (DOM) has an important influence on transformation of organic contaminants through the production of reactive substances, such as ?OH, 1O2, and 3DOM*. The photolysis of a higher chlorinated polychlorinated biphenyl (PCB) congener (2,2′,4,4′,5,5′-hexachlorobiphenyl, PCB 153) under simulated sunlight in presence of humic acid (HA) was investigated. Degradation of PCB 153 was accelerated significantly by the addition of HA, with a rate constant of 0.0214, 0.0413, and 0.0358 h?1 in the initial 18 h of irradiation in presence of 1, 5, and 20 mg/L HA, respectively. The main photodegradation products analyzed by gas chromatography mass spectrometry were 4-hydroxy-2,2′,4′,5,5′-pentaCB and 2,4,5-trichlorobenzoic acid. Main reactive species involved were determined by the electron spin-resonance spectroscopy, including 1O2 and ?OH. Special scavengers were added to elucidate the photolysis mechanisms. By using the specific scavengers, it turned out that ?OH accounted for 29.3 % of the degradation, and the intra-DOM reactive species (1O2, ?OH, and 3DOM*) accounted for 59.6 % of the degradation. Photo-transformation sensitized by DOM, which involves both aqueous and intra-DOM reactions of PCBs with reactive species, may be one of the most important mechanisms for natural attenuation of PCBs.  相似文献   

13.
The photodegradation and biotic transformation of the pharmaceuticals lidocaine (LDC), tramadol (TRA) and venlafaxine (VEN), and of the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) in the aquatic environmental have been investigated. Photodegradation experiments were carried out using a medium pressure Hg lamp (laboratory experiments) and natural sunlight (field experiments). Degradation of the target compounds followed a first-order kinetic model. Rates of direct photodegradation (light absorption by the compounds itself) at pH 6.9 were very low for all of the target analytes (?0.0059 h?1 using a Hg lamp and ?0.0027 h?1 using natural sunlight), while rates of indirect photodegradation (degradation of the compounds through photosensitizers) in river water at pH 7.5 were approximately 59 (LDC), 5 (TRA), 8 (VEN), 15 (ODT) and 13 times (ODV) higher than the rates obtained from the experiments in ultrapure water. The accelerated photodegradation of the target compounds in natural water is attributed mainly to the formation of hydroxyl radicals through photochemical reactions. Biotic (microbial) degradation of the target compounds in surface water has been shown to occur at very low rates (?0.00029 h?1). The half-life times determined from the field experiments were 31 (LDC), 73 (TRA), 51 (VEN), 21 (ODT) and 18 h (ODV) considering all possible mechanisms of degradation for the target compounds in river water (direct photodegradation, indirect photodegradation and biotic degradation).  相似文献   

14.
炼油高浓度有机废碱水是石化行业中很难降解的废水.本实验用光化学氧化技术对其进行了降解研究,比较了紫外光/空气、紫外光/O3、紫外光/空气/H2O2系统的处理效果.结果表明,光化学氧化技术降解此废水是可行的,紫外光可使废水中COD、油、酚的降解率明显提高.当废水中O3的投加量每小时为22 mg/L,或H2O2投加量为1%/L时,UV/O3法与UV/空气/H2O2法的降解效果相近.同时,通过控制O3浓度或H2O2的投加量等条件,可使废水中COD、油、酚和硫化物降解到地方污染物二级排放标准.  相似文献   

15.
Camargo JA  Alonso A  Salamanca A 《Chemosphere》2005,58(9):1255-1267
Published data on nitrate (NO3-) toxicity to freshwater and marine animals are reviewed. New data on nitrate toxicity to the freshwater invertebrates Eulimnogammarus toletanus, Echinogammarus echinosetosus and Hydropsyche exocellata are also presented. The main toxic action of nitrate is due to the conversion of oxygen-carrying pigments to forms that are incapable of carrying oxygen. Nitrate toxicity to aquatic animals increases with increasing nitrate concentrations and exposure times. In contrast, nitrate toxicity may decrease with increasing body size, water salinity, and environmental adaptation. Freshwater animals appear to be more sensitive to nitrate than marine animals. A nitrate concentration of 10 mg NO3-N/l (USA federal maximum level for drinking water) can adversely affect, at least during long-term exposures, freshwater invertebrates (E. toletanus, E. echinosetosus, Cheumatopsyche pettiti, Hydropsyche occidentalis), fishes (Oncorhynchus mykiss, Oncorhynchus tshawytscha, Salmo clarki), and amphibians (Pseudacris triseriata, Rana pipiens, Rana temporaria, Bufo bufo). Safe levels below this nitrate concentration are recommended to protect sensitive freshwater animals from nitrate pollution. Furthermore, a maximum level of 2 mg NO3-N/l would be appropriate for protecting the most sensitive freshwater species. In the case of marine animals, a maximum level of 20 mg NO3-N/l may in general be acceptable. However, early developmental stages of some marine invertebrates, that are well adapted to low nitrate concentrations, may be so susceptible to nitrate as sensitive freshwater invertebrates.  相似文献   

16.
Am Beispiel des Wirkstoffes Atrazin wird die atmosph?rische Verbreitung und der atmosph?rische Eintrag von Pflanzenschutzmitteln mit einer geringen Flüchtigkeit aufgezeigt. Immissions-Konzentrationen lagen zwischen weniger als 0.005 ng·m−3 und maximal 0.32 ng·m−3 Atrazin wird fast ausschlie?lich in der Partikelphase, offensichtlich im Ungleichgewicht mit der Gasphase, verfrachtet. Dies verz?gert wahrscheinlich den photochemischen Abbau in der Atmosph?re. Die Konzentrationen im Flüssigwasser aufliegender Wolken erreichten zu den Applikationsterminen nahezu 1.6 μg·1−1. Die Eintr?ge über die Atmosph?re betrugen in exponierter Lage im Fichtelgebirge mit 0.13 mg·m−2·a−1 ca. 0.4% der Aufwandmengen in 3j?hrigen Maisfruchtfolgen. Im Alpenraum wurden mit 0.012 mg·m−2·a−1 deutlich niedrigere Frachten gemessen als im Fichtelgebirge.Das Umweltrisiko durch die atmosph?rische Verbreitung und Deposition von Atrazin und anderen Pflanzenschutzmitteln mit vergleichbaren physikalisch-chemischen Eigenschaften ist als ?u?erst gering einzustufen. Atmospheric occurrence and deposition of atrazine are measured. During the application of atrazine, highest concentrations reached 1.6 μg·1−1 in liquid water of lowlying clouds touching mountain tops. Atmospheric deposition, however, hardly amounts to 0.4% of the flux on crop land by direct spraying. Airborne concentrations ranged from less than 0.005 ng·m−3 to 0.32 ng·m−3. Contrary to theoretical expectations, almost all atrazine was found in the particulate matter, indicating nonequilibrium with the gas phase. This may inhibit a rapid photochemical decomposition. Human health concerns and environmental risks due to the atmospheric occurrence and deposition of atrazine are judged as minor. This conclusion can be applied to many other, physicochemically related pesticides.  相似文献   

17.
主要研究了简单铈离子(Ce3+)在紫外光(UV)的作用下对蒽醌染料茜素绿(AG)的光催化降解效果和反应机理。结果表明,UV/Ce3+体系能够有效降解AG,初始反应速率随AG浓度的倒数值和Ce3+浓度的增加而线性增加,随初始溶液pH的增加先降低后增加,在酸性条件下有很高的TOC去除率。荧光探针实验表明,反应过程中可以产生·OH自由基。UV/Ce3+体系对其他类型染料和对硝基苯酚都有较好的降解效果。  相似文献   

18.
It is well established that aquatic wildlife in marine and freshwater of the European Union is exposed to natural and synthetic endocrine disruptor compounds (EDCs) which are able to interfere with the hormonal system causing adverse effects on the intact physiology of organisms. The traditional wastewater treatment processes are inefficient on the removal of EDCs in low concentration. Moreover, not only the efficiency of treatment must be considered but also toxicological aspects. Taking into account all these aspects, the main goal of the study was to investigate the photochemical decomposition of hazardous phenolic compounds under simulated as well as natural sunlight from the toxicity point of view. The studies were focused on photodegradation of 2,4-dichlorophenol as well as mixture of phenol, 2-chlorophenol and 2,4-dichlorophenol. Photosensitized oxidation process was carried out in homogeneous and heterogeneous system. V. fischeri luminescence inhibition was used to determine the changes of toxicity in mixture during simulated and natural irradiation. The photodegradation was carried out in three kinds of water matrix; moreover, the influence of presence of inorganic matter on the treatment process was investigated. The experiments with natural sunlight proved applicability of photosensitive chitosan for visible-light water pollutant degradation. The results of toxicity investigation show that using photosensitive chitosan for visible-light, the toxicity of reaction mixture towards V. fischeri has significantly decreased. The EC50 was found to increase over the irradiation time; this increase was not proportional to the transformation of the parent compounds.  相似文献   

19.
Background, Aim and Scope The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. Materials and Methods: An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC–UV) at regular time intervals under simulated sunlight. Results: The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. Discussion: The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. Conclusions: It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. Recommendations and Perspectives: To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described experiments features very good degradation of RDX under simulated sunlight, and the manufacturing costs are rather low (around 10 Euro/m2). Moreover, the degradation efficiency is higher compared to that of the biological method. This method exhibits great potential for practical applications owing to its easiness and low cost. If it can be applied extensively, the efficiency of wastewater treatment will be enhanced greatly.  相似文献   

20.
Kitis M  Kaplan SS 《Chemosphere》2007,68(10):1846-1853
The oxidative removal of natural organic matter (NOM) from waters using hydrogen peroxide and iron-coated pumice particles as heterogeneous catalysts was investigated. Two NOM sources were tested: humic acid solution and a natural source water. Iron coated pumice removed about half of the dissolved organic carbon (DOC) concentration at a dose of 3000 mg l(-1) in 24 h by adsorption only. Original pumice and peroxide dosed together provided UV absorbance reductions as high as 49%, mainly due to the presence of metal oxides including Al(2)O(3), Fe(2)O(3) and TiO(2) in the natural pumice, which are known to catalyze the decomposition of peroxide forming strong oxidants. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. A strong linear correlation was found between iron contents of coated pumices and UV absorbance reductions. Peroxide consumption also correlated with UV absorbance reduction. Control experiments proved the effective coating and the stability of iron oxide species bound on pumice surfaces. Results overall indicated that in addition to adsorptive removal of NOM by metal oxides on pumice surfaces, surface reactions between iron oxides and peroxide result in the formation of strong oxidants, probably like hydroxyl radicals, which further oxidize both adsorbed NOM and remaining NOM in solution, similar to those in Fenton-like reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号