首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于粤港澳珠江三角洲区域空气监测网络12个监测子站的大气污染物数据,梳理2013~2017年大气光化学氧化剂Ox(NO2+O3)与PM2.5质量浓度的变化趋势.Ox+PM2.5复合超标污染定义为NO2和PM2.5质量浓度日平均值以及O3浓度日最大8 h平均值(O3 MDA8)同时超过二级浓度限值,分析了不同类型站点复合超标污染的时空分布特征以及气象因素影响.结果表明,2013~2017年珠三角PM2.5年均质量浓度由(44±7)μg·m-3下降至(32±4)μg·m-3,实现PM2.5连续3 a达标.Ox年均质量浓度由2013年(127±14)μg·m-3下降至2016年(114±12)μg·m-3,2017年反弹至(129±13)μg·m-3,O3浓度上升明显(10 μg·m-3).以O3为首要污染物的污染过程占比由2013年33%增多至2017年78%,多个城市同时发生污染的区域特征明显.研究时段内Ox+PM2.5复合超标污染事件共发生60次,主要在城区站点(78%)和郊区站点(22%).秋季发生复合超标污染天数最多(52%),是因为强太阳辐射有利于臭氧生成,大气氧化性增加,进而促进了PM2.5二次生成.造成珠三角复合超标污染的天气形势主要为高压出海型(43%)、高压控制型(30%)和热带低压型(27%).就具体气象因素而言,气温在20~25℃且相对湿度在60%~75%的范围内时,复合超标污染事件发生占比最高(22%).在O3重污染过程中,夜间高湿和低风速使得NO2和PM2.5浓度显著上升,日间高温加剧了复合超标污染.  相似文献   

2.
利用Williams等和Guenther等的模型估计中国地区NOx和VOC的自然源排放.所得清单显示土壤NOx排放总量(以N计)为225.75 Gg;植被VOC年排放总量(以C计)为13.23 Tg,其中异戊二烯、单萜烯、其它VOC分别为7.77、1.86、3.60 Tg;排放有明显季节变化和空间变化.运用中尺度气象模式MM5以及光化学模式Calgrid研究这些排放在不同季节对对流层化学的影响.结果表明,O3、NOx、HNO3和PAN的全国平均浓度在土壤NOx排放影响下分别增加15.3%、15.7%、25.5%和6.5%;在植被VOC排放影响下改变5.6%、-4.9%、-19.3%和142.3%;在两者综合影响下增加26.1%、8.8%、4.3%和177.9%;浓度变化在夏季明显强于其它季节.自然源对中国地区光化学污染物空间分布有不同程度的影响,这种影响同区域气象条件、源排放和NMHC/NOx比值等因素有关.NOx和VOC的自然源排放对光化学特性影响显著,在光化学模拟过程中不容忽视.  相似文献   

3.
近地面臭氧(O3)已成为广州市的主要空气污染物.由于受地形、气象条件和前体物排放差异的影响,同一个城市内不同地区臭氧的变化特征与影响因素也存在较大差异.基于2015年10月广州4个代表不同站点类型[城区:广州市监测站(GMC)、上风向郊区:花都师范(HNS)、下风向郊区:番禺中学(PMS)和山区:帽峰山森林公园(MFS)]的空气质量监测站数据,结合WRF模拟的气象数据,研究了各站点O3的变化特征、影响因素及敏感性.结果表明,4个站点的O3和NOx日变化分别呈现单、双峰分布特征(MFS站点NOx除外),GMC、HNS和MFS站点的O3峰值出现在周六,而PMS出现在周四.MFS的O3日均浓度最高(98.61 μg·m-3),GMC的O3日均浓度最低(44.83 μg·m-3).不同站点臭氧浓度超标的NOx拐点区间分别为:GMC:55~90 μg·m-3,PMS:30~60 μg·m-3,MFS:10~20 μg·m-3.O3增长率的温度(T)拐点区间分别为:GMC:28~30℃,HNS:26~28℃,PMS:24~26℃,MFS的拐点温度不明显;湿度(RH)拐点区间分别为:GMC 55%~65%,HNS和PMS 60%~70%,MFS 80%~85%.轻风类风速(WS:1.5~3.3m·s-1)与O3呈现正相关;当风向为西北风向时,PMS站点的O3浓度最高,其他风向下MFS的O3浓度最高.通过各影响因子与O3的多元线性拟合发现,影响各站点O3的主控因子是,GMC:WS和T;PMS和HNS:T和RH,MFS:RH和WS.各站点O3敏感性分别是,GMC和HNS为VOCs控制区,MFS为NOx控制区,PMS为协同控制区.  相似文献   

4.
本研究在河北工程大学监测站点开展了大气中56种VOCs、NOx以及气象参数的长期在线监测,结合2013—2019年国控站的在线监测数据,对邯郸市PM2.5-O3复合污染特征进行分析.结果表明,邯郸市2013—2019年复合污染天数波动较大,近几年呈现增加趋势,且集中在每年的春夏季.2013—2017年复合污染天数峰值均出现在6月,2018年和2019年出现在3月和4月.气象因素分析结果表明,温度、湿度和气压对邯郸市复合污染影响较明显,当温度为21.0~29.0℃、湿度较高、气压偏低的条件下,更容易发生复合污染,而风速对邯郸市复合污染影响较小.对PM2.5与O3相互作用分析发现,冬季高浓度PM2.5对O3有抑制作用,夏季PM2.5浓度不超标时,O3浓度随其升高而上升,PM2.5浓度超标后变化趋势相反,当PM2.5浓度大于125 μg·m-3时不再出现PM2.5-O3复合污染.虽然近年来PM2.5、SO2和NO2浓度下降,但二次转化率依然较高甚至有加强趋势.利用VOCs/NOx值分析邯郸市O3生成敏感性,结果显示邯郸市春冬季属于VOCs控制到NOx控制的过渡区,夏秋季属于NOx控制区,且复合污染日VOCs/NOx值(6.3)最小,清洁日(9.3)最大.复合污染时NO3-和OC浓度较高,OC/EC值与其他污染日相比最大,说明复合污染时二次污染严重,有效治理PM2.5-O3复合污染必须减排能同时形成O3和二次有机气溶胶的高活性有机物.  相似文献   

5.
德州市夏季臭氧敏感性特征及减排方案   总被引:9,自引:9,他引:0  
严茹莎 《环境科学》2020,41(9):3961-3968
近年来德州市臭氧污染频发,2018年夏季(6~8月),德州市发生了严重臭氧污染事件,臭氧日最大8 h浓度值超标天数达60 d,超标率65%,3个月平均值为176 μg ·m-3,最高达262 μg ·m-3.本研究利用WRF-CAMx耦合的HDDM模块,分析期间德州臭氧敏感性特征及减排方案.结果表明,在空间上,德州市中心城区为VOCs控制区,而郊区为NOx与VOCs协同控制区.在时间上,VOCs敏感值每日为正值,但dO3_V50在6月(城区18.7 μg ·m-3,郊区19.7 μg ·m-3)和8月(城区15.3 μg ·m-3,郊区16.4 μg ·m-3)高于7月(城区13.0 μg ·m-3,郊区11.8 μg ·m-3),NOx敏感值城区呈正负交错,郊区大部分为正值,并与VOCs敏感值接近.对于城区减排方案应考虑以仅VOCs削减为优先,而郊区由于NOx和VOCs对臭氧减排效果相当,建议以NOx:VOCs=1:1为优.  相似文献   

6.
基于观测模型的成都市臭氧污染敏感性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
2019年4—8月,在成都市城区开展了O3、NOx、VOCs及气象参数的连续在线观测,基于观测数据OBM模拟的方式,对O3超标日的敏感性及收支进行了分析.研究发现,成都市城区O3超标日对应的绝大部分前体物的浓度均有所上升,基于VOCs的组分变化分析推断工业源排放在超标日可能存在较大幅度的增加.相对增量反应活性(RIR)值结果表明,成都市城区O3超标日对人为源VOCs(AVOCs)敏感性最强,其次为天然源(BVOCs)和CO,而对NOx为负敏感性,控制AVOCs对站点超标日的O3浓度下降最为有利;逐月变化来看,O3对AVOCs和NOx的敏感性逐月差异较小,对BVOCs的敏感性在6—7月最强,对CO的敏感性在4—5月最强.观测点位处于典型的VOCs控制区,以O3浓度为等值线的EKMA曲线显示4—5月脊线比例约为13,6—7月及8月的脊线比例约为8.建议在开展O3防控时,VOCs的减排比例应远大于NOx,且春季的减排比例应大于夏季.典型O3污染日的日最大O3小时生成速率为10×10-9~18×10-9· h-1,上午存在O3输入,下午O3本地生成占主导,其余时段O3输出影响较强.  相似文献   

7.
莆田地区一次臭氧污染过程分析   总被引:1,自引:0,他引:1  
利用2018年7月28日—8月5日莆田地区4个环境监测站臭氧逐小时浓度观测资料、莆田国家气象站逐小时资料、莆田地区风廓线雷达站逐小时资料对7月29日—8月4日的臭氧污染过程进行分析.结果表明,除7月30日臭氧最大浓度为193 μg·m-3外,其余日期莆田市监测站的臭氧浓度小时最大值均超过200 μg·m-3.本次污染过程在气象条件上臭氧浓度与温度呈正相关,与湿度呈负相关,臭氧浓度与两者的相关系数绝对值均大于0.77.边界层上的偏西风和西南风在此次过程中表现出有利于本地区臭氧污染的形成和维持.结合污染物排放资料和后向轨迹分析表明,污染主要成因以外来源输送为主,后向轨迹经过漳州、泉州排放区,本地区排放对污染的贡献较少.莆田市监测站的NOx与O3浓度呈正相关的特殊现象是海陆风和山谷风配合地形造成的O3和NOx共同堆积和扩散所导致的.  相似文献   

8.
北京大气中NO、NO2和O3浓度变化的相关性分析   总被引:26,自引:8,他引:18  
臭氧(O3)是城市污染大气中的首要光化学污染物,其变化规律与氮氧化物(NOx=NO+NO2)关系密切.采用49C臭氧分析仪和42CTL氮氧化物分析仪对北京城区O3和NOx浓度进行了连续观测,时间为2004-08~2005-07.结果显示,O3和OX(O3+NO2)浓度在午后15:00左右出现峰值,NOx呈双峰态日变化,在07:00和23:00左右出现峰值.不同季节污染物的浓度变化存在差异,O3和NOx浓度分别在夏季和冬季达到最大.NOx浓度存在100×10-9(体积分数)的“分界点”,NOx低浓度时以NO2为主,NOx高浓度时NO占大部分.OX区域贡献和局地贡献存在明显的季节变化,前者主要受区域背景O3的影响,在春季最大,后者主要受局地NOx光化学反应的制约,在夏季最强,同时OX组分呈现显著的昼夜差异.  相似文献   

9.
2006~2019年珠三角地区臭氧污染趋势   总被引:12,自引:21,他引:12  
研究基于2006~2019年粤港澳珠江三角洲区域空气监测网络数据,利用Mann-Kendall检验法和Sen斜率法等统计方法计算了珠三角不同区域臭氧年际变化情况,并分析了变化的原因.结果表明:①2006~2019年珠三角平均臭氧浓度上升趋势显著(P<0.05),平均增长速率为0.80 μg·(m3·a)-1.2016年之后,臭氧平均增长速率为2.08 μg·(m3·a)-1,臭氧浓度增速加快.②珠三角臭氧浓度变化趋势有明显的空间差异和季节差异.中部地区臭氧年均浓度增加趋势显著,外围区域臭氧增加趋势不显著;臭氧增加趋势主要集中在夏季,其他季节变化趋势不显著.③珠三角臭氧变化趋势是由前体物和气象条件共同造成的,特别与NOx的浓度变化密切相关.2006~2019年珠三角中部区域NO2浓度明显下降,滴定效应减弱导致臭氧浓度增加;边缘地区NO2浓度变化较小,臭氧浓度未发生明显的改变.④随着前体物浓度的变化,珠三角臭氧生成敏感区的特征正在发生改变,VOCs控制区面积不断减少,协同控制区和NOx控制区面积逐渐增加,区域臭氧污染防治需要加强对前体物的协同控制.  相似文献   

10.
以2019年3—4月臭氧(O3)污染小高峰为例,应用空气质量模型CAMx-DDM法分析了成渝地区O3浓度对人为源前体物排放敏感性,并用2020年"新冠"疫情防控及生产恢复导致的污染排放同比变化情景进行模拟验证.模拟结果表明成渝地区O3对NOx的敏感性为负、对VOCs的敏感性为正,其中,重庆市主城区、主城区以西地区、川南城市群和成都平原西部地区敏感性较高,与其自身污染排放源分布密集有关.以典型城市重庆市主城区为例,2019年3—4月O3小时浓度对NOx和VOCs的敏感性平均值分别为-19.14 μg·m-3和7.25 μg·m-3,两者表现出相反的日变化规律,且主要受到本地及周边区域的影响,模拟结果显示在所有区域VOCs排放均削减25%的情况下,3月和4月月均O3日最大8 h浓度分别下降2.62 μg·m-3和3.59 μg·m-3.敏感性模拟得到2020年3月四川省和重庆市NOx排放量同比下降8.00%和22.40%,VOCs同比下降1.00%和7.92%;4月NOx排放量同比上升5.00%和9.50%,四川省VOCs同比持平,重庆市上升3.63%,与同期"新冠"疫情防控及生产恢复导致的实际排放情况非常一致.  相似文献   

11.
吴也正  张鑫  顾钧  缪青  魏恒  熊宇  杨倩  吴斌  沈文渊  马强 《环境科学》2024,45(3):1392-1401
以2017~2021年的5~6月苏州市城区站点的大气污染物浓度为研究对象,分析了臭氧(O3)、氮氧化物(NOx)、总氧化剂(Ox)、一氧化碳(CO)和挥发性有机物(VOCs)等污染物的变化特征,利用基于观测的模型(OBM)研究了O3污染成因及其年际变化,解析了环境空气VOCs的主要来源及其变化趋势.结果表明:①近年来苏州Ox平均体积分数以及NOx和CO平均浓度整体呈下降趋势,但VOCs的体积分数整体呈上升趋势;O3污染天光化学反应前体物浓度水平仍较高,且显著高于优良天.②近年来苏州O3生成处于VOCs控制区;苏州市VOCs和NOx长期减排比例应不低于5∶1,在VOCs控制方面应注重对芳香烃和烯烃的减排.③源解析结果显示,工业排放、汽油车尾气和柴油机尾气是苏州市VOCs的主要排放源;近年来工业排放源和溶剂使用源有所下降,但汽油车尾气源和油气挥发源贡献率上升明显,且上述两类污染源排放VOCs的O3生成潜势较高.④综合分析各排放源对O3生成潜势的贡献发现,溶剂使用源和汽油车尾气源的VOCs排放是影响苏州市O3生成的关键因素.  相似文献   

12.
广州市冬季一次典型臭氧污染过程分析   总被引:1,自引:1,他引:0  
裴成磊  谢雨彤  陈希  张涛  邱晓暖  王瑜  王在华  李梅 《环境科学》2022,43(10):4305-4315
为探究广州市2020年冬季(1月)一次臭氧污染过程,分析了气象条件对臭氧污染产生的影响;运用臭氧生成潜势(OFP)和正交矩阵因子分解法(PMF)分析了影响臭氧的主要挥发性有机物(VOCs)物种和来源;通过经验动力学建模方法(EKMA)识别了臭氧生成控制区,并提出了相应的前体物减排策略.结果表明,本次臭氧污染过程中同时出现了NO2超标,并且PM10和PM2.5浓度也处于高位,体现出和夏、秋季不同的大气复合污染特征;夜间边界层高度低(<75 m)和大气稳定度高加剧了臭氧前体物和颗粒物的累积,日间温度升高约5℃、太阳辐射增强约10%和水平风速小(<1 m ·s-1)等气象条件加剧了光化学反应,促进了臭氧和颗粒物的生成.冬季VOCs组分以烷烃为主(占比为68.2%),且烷烃和炔烃占比较其他季节更高,但芳香烃(二甲苯和甲苯)和丙烯是臭氧生成的关键VOCs物种;源解析结果显示,VOCs的主要来源为汽车尾气(22.4%)、溶剂使用(20.5%)和工业排放(17.9%),其中溶剂使用的OFP最高;臭氧本地生成主要受VOCs控制,前体物VOCs和NOx按比例3 :1进行削减较为合理.研究探索了冬季臭氧污染的成因,为开展重污染季节O3和PM2.5协同控制提供科学支撑.  相似文献   

13.
韩丽  陈军辉  姜涛  徐晨曦  李英杰  王成辉  王波  钱骏  刘政 《环境科学》2021,42(10):4611-4620
2018年4月在成都市区开展了臭氧(O3)以及挥发性有机物(VOCs)等污染物的在线监测,搜集了成都市国控站点数据,对O3污染特征进行分析,利用增量反应活性(RIR)的方法识别了O3生成的关键前体物.结果表明,成都市2016~2018年的4月的O3污染程度逐年加重,O3日变化呈现单峰态;当温度大于20℃,风速处于1~1.5 m·s-1,相对湿度小于65%时,O3超标率在4月会高于80%;2018年4月,O3超标天的NOx日均浓度是非超标天的2.3倍,VOCs日均浓度是非超标天的2倍;人为源VOCs、CO、天然源VOCs和NOx这4大类前体物在臭氧超标天对O3的RIR值依次为2.4、0.87、0.06和-2.6,说明O3处于VOCs控制区;从VOCs物种来看,间/对-二甲苯、乙烯、反-2-丁烯、丙烯、邻-二甲苯、甲苯、丙酮、异戊二烯、异戊烷和正丁烷等为O3生成的关键活性VOCs物种.  相似文献   

14.
分析了2018年10月初广州市一次为期6 d的臭氧污染事件,利用拉格朗日光化学轨迹模型对广州市的臭氧污染进行了溯源分析,量化了不同区域对臭氧污染的贡献,评估了重点排放区域不同行业和不同前体物减排对臭氧污染控制的效果.结果表明,本次污染事件期间,日最大8 h臭氧均值均超过160 μg·m-3,最高达271 μg·m-3,氮氧化物(NOx)和挥发性有机物(VOCs)的平均浓度为(77.7±42.8)μg·m-3和(71.9±56.2)μg·m-3.芳香烃和烯烃是主要的VOCs反应活性物种,分别贡献了38%和30%的·OH反应活性以及51%和16%的臭氧生成潜势.本次臭氧污染事件主要受3类气团输送影响,3类气团中的高排放区域分别为广东省外、广东省内和广州市本地,在高排放区域中臭氧生成均受VOCs控制.途经区域前体物减排的敏感性分析表明,减排VOCs对于降低臭氧浓度的效果优于减排NOx.在100%减排情况下控制高排放区域的交通源排放对广州市臭氧控制的效果(臭氧降低14.6%~21.0%)高于控制工业(8.4%~15.3%)、电厂(0.9%~6.2%)和民用源(2.3%~4.7%)的排放,但单独控制交通源在小于90%减排比例下对臭氧污染控制的效果并不显著(<10%).此外,珠江三角洲地区的生物源排放也对臭氧生成有重要贡献,在模型中关闭生物源排放后,广州市臭氧浓度降低6%~19%.本研究证实了拉格朗日光化学轨迹模型在区域臭氧污染溯源的应用效果,并为广州市臭氧污染的区域协同控制提供了对策建议.  相似文献   

15.
中国商品能源消耗导致的氮氧化物排放量   总被引:16,自引:4,他引:12  
能源消耗导致的NOx排放是影响环境空气质量及区域酸沉降的重要因素.根据全国及各省区商品能源消耗与不同经济部门、不同燃料类型NOx排放因子,估算了90年代中国NOx排放量,详细给出了1997年分省、分地区、分行业及分燃料排放清单,并绘出了NOx平均排放强度分布图.结果表明,中国NOx排放量由1990年8.4Mt快速增长到1996年的12.0Mt.但与1996年NOx排放峰值相比,1997和1998年中国NOx排放量分别下降了约0.34Mt和0.82Mt.中国NOx排放的燃料、行业及地区分布极不平衡:大约3/4的NOx排放源自煤的燃烧;行业分布上,NOx则主要来自于工业(39.56%)、电力(36.74%)和交通运输(11.22%);各省区NOx排放差别很大,河北、江苏、辽宁、山东、广东、山西、黑龙江、湖北和河南9省超过0.5Mt,而青海、宁夏和海南3省区小于0.1Mt.NOx平均排放强度最大的地区(>10t·(km2·a)-1)包括上海、天津和北京市.总体来说,中国NOx排和污染主要集中在人口密集、经济相对发达的东中部和东南部地区,尤其是北京、上海、天津等大城市.  相似文献   

16.
为确定石家庄东部郊区交通干线附近O3生成光化学敏感性,利用2019年1月1日—2020年10月31日在线观测的NOx、NOy和O3等数据计算并分析了O3生成效率(OPE)及O3光化学敏感性的NOx临界浓度.结果表明:1交通干线附近O3光化学敏感性存在季节差异,春季主要受VOCs控制,整体OPE为2.6±0.3,夏、秋季节主要受NOx与VOCs协同控制,整体OPE分别为5.3±0.4和5.1±0.8;2NOx体积分数>11×10-9时,O3生成主要为VOCs控制;NOx体积分数介于6×10-9~11×10-9时,O3生成主要受VOCs与NOx协同控制;NOx体积分数<6×10-9时,O3生成主要为NOx控制;3O3生成敏感性存在日变化特征,10:00之前O3生成主要受VOCs控制,10:00—11:00是O3生成由VOCs控制转变为VOCs和NOx协同控制的过渡时段,12:00之后O3生成主要由VOCs和NOx协同控制,且午后14:00—16:00之间NOx对O3控制比例凸显.因此,石家庄O3治理不但要重视NOx与VOCs排放源的协同管控,尤其午后还需要对NOx排放源进行分时段精细化管控.  相似文献   

17.
兰州市是我国首个发现光化学烟雾事件的城市,其盆地地形、特殊的气象条件及较高的石化工业产业的排放,使得近年来臭氧浓度急剧上升.本论文基于兰州市2016—2019年4年的空气质量自动监测数据以及中国气象网站提供的温度、湿度、气压等气象参数,对兰州市大气臭氧(O3)和其前体物(NOx)污染的时空分布特征及城关城区和西固工业区的VOCs物种组成进行研究;利用HYSPLIT模型,通过大气的扩散、传输过程分析造成臭氧污染特征的原因;利用OZIPR模型绘制出臭氧等浓度曲线(EKMA),对西固工业区和城关城区的敏感区进行了分析,结果表明城关城区的EKMA曲线的脊线VOCs/NOx比值约为15∶1,臭氧敏感性属于VOCs控制区,而西固工业区EKMA曲线的脊线VOCs/NOx比值约为25.6∶1,敏感性与历年的NOx控制区不同,转变为VOCs控制区.同时,基于MIR法和Prop-Equiv法两种方法估算了各VOCs物种对臭氧生成的贡献,结果显示在夏、冬季烯烃均为主要的贡献物种.并识别出高反应活性VOCs物种,初步解析来源.最后针对城关城区和西固工业区分别提出了详尽的臭氧防控及其前体物的减排对策建议.  相似文献   

18.
本文对关中浐河流域河水-土壤-植物的硝酸盐和氮同位素组成进行调查,并与前期对浐河河水氮同位素的结果对比。研究表明:从浐河上游至下游,土壤NO3?-N含量表现出:农耕区(43.5 mg???kg?1)>森林区(3.25 mg???kg?1)>城市区(0.63 mg???kg?1);土壤δ15N-NO3?值表现出:农耕区(18.1‰)>城市区(?1.5‰)>森林区(?5.8‰);不同的土地利用类型是让其产生变化的重要原因。浐河河水NO3?-N含量(3.2?—?6.4 mg???kg?1)及δ15N-NO3?值(?1.4‰?—?2.1‰)均表现出下游高于上游。相对于前期对浐河河水氮同位素的研究,发现上游和中游水体NO3?-N含量整体呈上升趋势,而下游地区NO3?-N含量有所下降。结合河流δ15N-NO3?的空间分布特征可以看出源头日渐发达的旅游业和中游农业的发展对水体的污染加重,而下游工业污染的治理效果明显。植物氮同位素变化范围在?4.6‰?—??2.1‰。对浐河周边水-土-植物的氮同位素组成特征和变化研究可以为浐河流域的生态评价和治理提供一定的理论依据。  相似文献   

19.
典型石化企业排放空气质量影响模拟研究   总被引:2,自引:2,他引:0  
基于惠州市大亚湾区2017年大气污染源排放清单,利用WRF-CMAQ模型系统量化评估了大亚湾区某典型石化企业在关停和增产排放情景下对周边空气质量的影响.清单结果显示该企业2017年SO2、NOx、PM10、PM2.5、CO和VOCs的排放量分别为212 、1744 、455 、359 、1458 和6446 t,在严格落实等量替代及减排措施后,该石化企业虽然产能翻倍,但VOCs排放量同比2017年显著减少了30%,其它污染物排放量增加了6%~19%.模拟结果显示2017年该石化企业排放对大亚湾区NO2、PM10、PM2.5和O3的浓度贡献分别为0.91、0.64、0.54和-0.08 μg·m-3,完全关闭该企业排放后对周边站点NO2改善效果最大(可使邻近管委会子站NO2浓度下降1.24 μg·m-3,下降百分比为5.10%),但由于NO的滴定效应,该企业NOx减排对周边管委会子站和霞涌子站的O3浓度均有轻微负贡献;该石化企业的增产改造对周边O3浓度降低影响明显,周边站点中O3浓度最高可下降2.45 μg·m-3(下降幅度为1.72%),大亚湾区O3浓度整体也可下降1.45 μg·m-3.此外,受秋冬季不利扩散条件以及主导上风向污染传输影响,该企业在1月和10月对管委会子站NO2、PM10和PM2.5的浓度贡献较大,由于冬季低温导致光化学反应自由基活性降低,该企业在1月对管委会子站O3浓度负贡献显著.  相似文献   

20.
联合PMF模型与稳定同位素的地下水污染溯源   总被引:1,自引:1,他引:0  
张涵  杜昕宇  高菲  曾卓  程思茜  许懿 《环境科学》2022,43(8):4054-4063
基于传统水质监测与污染排放的污染源识别方法,存在监测频率与识别结果模糊等限制,难以实现污染源及迁移转化的准确量化.联合多元统计分析与稳定同位素技术,以成都平原典型混合用地区地下水污染为研究对象,提出利用正定矩阵因子分析(PMF)模型识别污染主控因子,减小环境因素对污染源判别的干扰,并基于水化学分析与土地利用构建贝叶斯稳定同位素混合模型,进一步量化不同污染源对地下水典型污染物硝酸盐氮(NO3-)的贡献率.结果表明,研究区地下水NO3-、NO2-、NH4+、Mn、Fe、SO42-和Cl-均存在不同程度超标,且具有空间异质性.地下水中"三氮"主要以NO3-为主,NO3-浓度在菜地的地下水中普遍偏高(平均值为9.29 mg·L-1),其次是在养殖场(平均值为7.66 mg·L-1)和耕地(平均值为7.09 mg·L-1),在工业区最低(平均值为2.20 mg·L-1).研究区地下水水质受原生地质作用、农业活动、水文地球化学演化、生活污染和工业污染的复合影响,且农业活动是研究区地下水NO3-增长的主要原因.研究区内农业区地下水NO3-的主要来源贡献为化肥(32%)和土壤氮(25%);工业区地下水NO3-的主要来源贡献为污水排放(28%)和大气降雨(27%).通过多元统计与稳定同位素技术的有机结合,有效识别了地下水污染来源及其贡献率,可为地下水污染源头防控提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号