共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrawal A Cronin J Tonazzi J Mark McCleskey T Ehler DS Minogue EM Whitney G Brink C Burrell AK Warner B Goldcamp MJ Schlecht PC Sonthalia P Ashley K 《Journal of environmental monitoring : JEM》2006,8(6):619-624
Beryllium is widely used in industry for its unique properties; however, occupational exposure to beryllium particles can cause potentially fatal disease. Consequently, exposure limits for beryllium particles in air and action levels on surfaces have been established to reduce exposure risks for workers. Field-portable monitoring methods for beryllium are desired in order to facilitate on-site measurement of beryllium in the workplace, so that immediate action can be taken to protect human health. In this work, a standardized, portable fluorescence method for the determination of trace beryllium in workplace samples, i.e., air filters and dust wipes, was validated through intra- and inter-laboratory testing. The procedure entails extraction of beryllium in 1% ammonium bifluoride (NH(4)HF(2), aqueous), followed by fluorescence measurement of the complex formed between beryllium ion and hydroxybenzoquinoline sulfonate (HBQS). The method detection limit was estimated to be less than 0.02 microg Be per air filter or wipe sample, with a dynamic range up to greater than 10 microg. The overall method accuracy was shown to satisfy the accuracy criterion (A< or = +/-25%) for analytical methods promulgated by the US National Institute for Occupational Safety and Health (NIOSH). Interferences from numerous metals tested (in >400-fold excess concentration compared to that of beryllium) were negligible or minimal. The procedure was shown to be effective for the dissolution and quantitative detection of beryllium extracted from refractory beryllium oxide particles. An American Society for Testing and Materials (ASTM) International voluntary consensus standard based on the methodology has recently been published. 相似文献
2.
Airborne hexavalent chromium (Cr[VI]) is a known human respiratory carcinogen and allergen. Workers in a variety of industries may be exposed to airborne hexavalent chromium, with exposures frequently occurring via inhalation and/or dermal contact. Analytical methods for the measurement of Cr(VI) compounds in workplace samples, rather than for the determination of total elemental chromium in workplace air, are often desired because exposure limit values for Cr(VI) compounds are much lower than for total Cr. For years, sampling and analytical test methods for airborne Cr(VI) have been investigated so as to provide means for occupational exposure assessment to this highly toxic species. Inter-conversion of trivalent chromium (Cr[III]) and Cr(VI) can sometimes occur during sampling and sample preparation, and efforts to minimize unwanted redox reactions involving these chromium valences have been sought. Because of differences in toxicity, there is also interest in the ability to differentiate between water-soluble and insoluble forms of Cr(VI), and procedures that provide solubility information concerning Cr(VI) compounds have been developed. This paper reviews the state of the art concerning the measurement of airborne Cr(VI) compounds in workplace aerosols and related samples. 相似文献
3.
Inductively coupled plasma atomic emission spectrometry (ICP-AES) is rapidly overtaking atomic absorption spectrometry (AAS) as the method of choice for the determination of toxic metals in workplace air. However, the few ICP-AES methods that have been published are not well characterised in terms of the effectiveness of the sample dissolution procedures described and their validation status. The International Standards Organization (ISO) is currently engaged in developing ISO 15202, which will describe a generic method for the determination of metals and metalloids in airborne particulate matter by ICP-AES. One part of the proposed standard deals with dissolution procedures. The ISO work has been supported by a project carried out in the authors' laboratory to identify, develop and validate sample dissolution procedures for inclusion in the proposed standard. This paper describes an interlaboratory comparison carried out to assess the performance of selected procedures using samples of airborne particulate matter collected on filters with a multiport sampler. Five dissolution procedures were tested. These included an ultrasonic agitation procedure, two hot-plate procedures (based upon NIOSH 7300 and OSHA ID 125G) and two microwave-assisted procedures (based upon EPA 3052). It was shown that the dissolution procedures selected for use in the trial and used internally at HSL generally gave equivalent performance. As expected, a wider spread of results was obtained by participants in the trial. More specifically, there exists some reservation regarding the ability of the ultrasonic and hot-plate procedures to attack fully on a consistent basis some resistant materials, e.g., chromium containing particulate matter. Above all, the trial demonstrated the usefulness of microwave-assisted dissolution procedures in a modern laboratory. 相似文献
4.
Harper M 《Journal of environmental monitoring : JEM》2006,8(6):598-604
Standardized conventions governing the fractions of airborne particles that can penetrate the human head airways, the thoracic airways and the alveolar spaces have been internationally (although not universally) adopted. Several agencies involved in setting limit values for occupational exposure concentrations have taken these conventions into account when considering the appropriate standard for specific chemicals, in order to ensure the standards are biologically relevant. A convention is selected based on the characteristic health effects, and forms the basis of measurement against the limiting concentration value. In order to assess exposure for comparison to this metric or any other purposes, it is necessary to choose a sampler whose performance matches the convention, and protocols have been developed and used to test sampler performance. Several aerosol sampling devices are available, nominally at least, for each of the conventions. Some considerations important to the sampling of airborne particles containing beryllium with regard to the sampling conventions, the test protocols and sampler performance are discussed. 相似文献
5.
Ashley K Song R Esche CA Schlecht PC Baron PA Wise TJ 《Journal of environmental monitoring : JEM》1999,1(5):459-464
Recent studies have demonstrated the utility of ultrasonic extraction (UE), followed by portable anodic stripping voltammetry (ASV), for the on-site determination of lead in environmental and industrial hygiene samples. The aim of this work was to conduct an interlaboratory evaluation of the UE-ASV procedure, with a goal of establishing estimates of method performance based on results from collaborative interlaboratory analysis. In this investigation, performance evaluation materials (PEMs) with characterized lead concentrations were used for interlaboratory testing of the UE-ASV procedure. The UE-ASV protocol examined has been promulgated in the form of two separate national voluntary consensus standards (one for UE and another for electroanalysis, which includes ASV). The PEMs consisted of characterized and homogenized paints, soils, and dusts (the last of which were spiked onto wipes meeting national voluntary consensus standard specifications), and air filter samples (mixed cellulose ester membrane) generated using characterized paints within an aerosol chamber. The lead concentrations within the PEMs were chosen so as to bracket pertinent action levels for lead in the various sample matrices. The interlaboratory evaluation was conducted so as to comply with an applicable national voluntary consensus standard that can be used to estimate the interlaboratory precision of a given analytical test method. Based on the analytical results reported by the participating laboratories, relative standard deviations (RSDs) for repeatability and reproducibility were computed for three different lead contents of the four PEMs. RSDs for repeatability were 0.019-0.100 for paints; 0.030-0.151 for soils; 0.085-0.134 for dust wipes; and 0.095-0.137 for air filters. RSDs for reproducibility were 0.127-0.213 for paints; 0.062-0.162 for soils; 0.085-0.134 for dust wipes; and 0.114-0.220 for air filters. With the exception of one of the air filter samples and one of the paint samples, the precision estimates were within the +/- 20% precision requirement specified in the US Environmental Protection Agency National Lead Laboratory Accreditation Program (NLLAP). The results of this investigation illustrate that the UE-ASV procedure is an effective method for the quantitative measurement of lead in the matrices evaluated in this study. 相似文献
6.
Christensen CS Brødsgaard S Mortensen P Egmose K Linde A 《Journal of environmental monitoring : JEM》2000,2(4):339-343
A dynamic system for the generation of stable hydrogen peroxide test atmospheres was applied to the evaluation of samplers used for the determination of hydrogen peroxide in workplace air. The system is able to generate gas mixtures of between 0.1 and 10 ppm at different combinations of relative humidity (20-80%) and temperature (10-30 degrees C). Gaseous hydrogen peroxide is sampled on glass filters impregnated with Ti(IV) chloride and sulfuric acid and analyzed by UV spectroscopy. An interference was observed due to the acid catalyzed decomposition of peroxyacetic acid to hydrogen peroxide. This was significantly reduced by applying high sample flow rates and by lowering the concentration of sulfuric acid. The performance of the sampler and sources of uncertainties were tested according to the European Standard EN 1076. 相似文献
7.
Farnsworth JE Goyal SM Kim SW Kuehn TH Raynor PC Ramakrishnan MA Anantharaman S Tang W 《Journal of environmental monitoring : JEM》2006,8(10):1006-1013
The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used. 相似文献
8.
Takeuchi A Takigawa T Kawasumi Y Yasugi T Endo Y Wang DH Takaki J Sakurai H Ogino K 《Journal of environmental monitoring : JEM》2007,9(11):1271-1275
Monitoring of the workplace concentration of 3-methoxybutyl acetate (MBA), which is used in printer's ink and thinner for screen-printing and as an organic solvent to dissolve various resins, is important for health reasons. An active and a diffusive sampling method, using a gas chromatograph equipped with a flame ionization detector, were developed for the determination of MBA in workplace air. For the active sampling method using an activated charcoal tube, the overall desorption efficiency was 101%, the overall recovery was 104%, and the recovery after 8 days of storage in a refrigerator was more than 90%. For the diffusive sampling method using the 3M 3500 organic vapor monitor, the MBA sampling rate was 19.89 cm(3) min(-1). The linear range was from 0.01 to 96.00 microg ml(-1), with a correlation coefficient of 0.999, and the detection limits of the active and diffusive samplers were 0.04 and 0.07 microg sample(-1), respectively. The geometric mean of stationary sampling and personal sampling in a screen-printing factory were 12.61 and 16.52 ppm, respectively, indicating that both methods can be used to measure MBA in workplace air. 相似文献
9.
Brisson MJ Ashley K Stefaniak AB Ekechukwu AA Creek KL 《Journal of environmental monitoring : JEM》2006,8(6):605-611
Control of workplace exposure to beryllium is a growing issue in the United States and other nations. As the health risks associated with low-level exposure to beryllium are better understood, the need increases for improved analytical techniques both in the laboratory and in the field. These techniques also require a greater degree of standardization to permit reliable comparison of data obtained from different locations and at different times. Analysis of low-level beryllium samples, in the form of air filters or surface wipes, is frequently required for workplace monitoring or to provide data to support decision-making on implementation of exposure controls. In the United States and the United Kingdom, the current permissible exposure level is 2 microg m(-3) (air) and the United States Department of Energy has implemented an action level of 0.2 microg m(-3) (air) and 0.2 microg/100 cm(2) (surface). These low-level samples present a number of analytical challenges, including (1) a lack of suitable standard reference materials, (2) unknown robustness of sample preparation techniques, (3) interferences during analysis, (4) sensitivity (sufficiently low detection limits), (5) specificity (beryllium speciation) and (6) data comparability among laboratories. Additionally, there is a need for portable, real-time (or near real-time) equipment for beryllium air monitoring and surface wipe analysis that is both laboratory-validated and field-validated in a manner that would be accepted by national and/or international standards organizations. This paper provides a review of the current analytical requirements for trace-level beryllium analysis for worker protection and also addresses issues that may change those requirements. The current analytical state of the art and relevant challenges facing the analytical community will be presented, followed by suggested criteria for real-time monitoring equipment. Recognizing and addressing these challenges will present opportunities for laboratories, research and development organizations, instrument manufacturers and others. 相似文献
10.
Portable X-ray fluorescence (XRF) technology may provide faster turn-around without compromising accuracy when assessing personal exposures to metals such as lead, but it has only been tested in limited field environments. This study is part of a series, where different sampler types are used to collect airborne lead in different environments for presentation to a portable XRF analyzer. In this case personal samples were taken at a bronze foundry where lead is added to an alloy of copper, zinc and iron to improve casting, using the closed-face 37 mm cassette, the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. Following XRF analysis the samples were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP). For lead, all five samplers gave correlations (r(2)) greater than 0.9 between the two analytical methods over the entire range of found lead mass, which encompassed both the action level and the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). However, a correction was required to adjust linear regression trendlines to give a 1 : 1 correlation for the average of three readings across the GSP sampler, and a similar correction was required for the single readings from the IOM sampler and the 25 mm filter cassette. The bias possibly is due to interference from other metals, possibly copper which can absorb the fluorescent radiation of lead. In the case of the Button sampler, the bias is larger, indicating a further source of error, perhaps due to the thickness of the deposit. However, in all cases, correction of the lead results did not greatly affect the overall percentage of samples where the XRF result was within 25% of the ICP result, although it did improve the overall accuracy of the results. The GSP, IOM and Button samplers are suitable candidates for further evaluation as compatible with on-site XRF analysis for lead and other metals. It is important to check carefully factory pre-set instrument calibrations, as a bias in the calibration for copper was observed. 相似文献
11.
12.
13.
On-site measurement of lead in workplace air filter samples and paint chip samples by ultrasonic extraction and anodic stripping voltammetry (UE-ASV) was evaluated in the field during renovation and remodeling activities in residences having leaded paint. Aerosol and paint samples were collected using standard techniques, and the samples were analyzed on-site for lead content by portable UE-ASV. Lead in sample extracts was subsequently determined by atomic absorption (AA) spectrometry in a fixed-site laboratory. The remaining sample extracts plus undissolved material (air filters or paint particles) were then subjected to hot plate digestion in concentrated nitric acid-30% hydrogen peroxide prior to AA analysis for lead. Field UE-ASV lead data were thereby compared to UE-AA and hot plate digestion-AA results from fixed-site laboratory lead measurement. Determination of lead in air filter samples by UE-ASV (over the range of 5 microg to approximately 800 microg Pb per sample) was extremely well correlated with lead measurement by UE-AA and hot plate digestion-AA procedures. However, a significant negative bias associated with ASV measurement was observed, and this was attributed to a matrix effect. Lead measurement in paint chip samples by UE-ASV (over the range of approximately 10 to approximately 550 microg Pb g(-1)) was well correlated with lead measurement by UE-AA and hot plate digestion-AA procedures. However, correlation and precision were lower for lead measurement in paint samples as compared to aerosol samples, and a negative bias was also observed. Lead measurements by UE-AA were compared to lead determinations by hot plate digestion-AA; these data were highly correlated and demonstrated no significant bias. Thus it was concluded that the ultrasonic extraction procedure performed equivalently to hot plate digestion. It was reasoned that matrix effects due to the preparation and analysis of paint chip particles resulted in greater imprecision as well as negative bias by ASV measurement. Despite significant negative bias in this sample set, UE-ASV offers promise for on-site measurement of lead in samples of interest in occupational and environmental health. 相似文献
14.
Portable X-ray fluorescence (XRF) technology may provide faster turn-around without compromising accuracy when assessing personal exposures to metals such as lead, but it has only been tested in limited field environments. This study is part of a series, where various types of sampler are used to collect airborne lead in different environments for presentation to a portable XRF analyzer. In this case personal samples were taken at a manufacturer of solder alloys consisting mainly of lead and tin, using the closed-face 37 mm cassette (CFC), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. Following XRF analysis the samples were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP). The internal surfaces of CFC's and 25 mm open-face cassettes were also wiped, and the wipes analyzed for lead to assess wall-losses in these two samplers. Analysis of all elements present is useful to ascertain contributions to matrix interference effects. In addition to lead, other metals such as tin, copper, iron, silver, cadmium and antimony were also detected in some or all of the samples by ICP analysis, but only copper and iron could be determined using the XRF analyzer under test. After the removal of a few outliers, all five samplers gave good correlations (r(2) > 0.9) between the two analytical methods over the entire range of found lead mass, which encompassed both the action level and the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations without additional correction, indicating an absence of matrix effects, particularly from tin, which was the most common element after lead. The average of three XRF readings across filters from the GSP samplers gave the best results with 96.7% of results within +/-25% and 100% within +/-30% of the associated ICP values. Using the center reading only was almost as good with 90.0% of results within +/-25% and 96.7% within +/-30% of the associated ICP values, and results can be obtained faster with a single reading. The use of an algorithm developed by OSHA for three readings from the CFC filter samples gave the next best results with 93.3% of XRF results within +/-25% of the corresponding ICP values. However, analysis of wipes from the interior of the cassettes indicated a substantial loss of sample to the walls, and even larger wall-losses were encountered in the 25 mm open-face cassette. Neither this latter sampler nor the IOM or button sampler met the 95% criterion, even for +/-30% accuracy. 相似文献
15.
Proximity analysis and spatial variability of the ambient nitrogen dioxide (NO(2)) concentration in Rayong province, Thailand, were analyzed using geostatistics and spatial modeling techniques. Annual concentrations of nitrogen dioxide were predicted and spatially interpolated using various interpolation techniques (i.e. kriging, IDW and spline). Sensitivity analysis was carried out to assure the accuracy of the predicted results. The GIS-based exposure map was simulated and was assisted to identify high exposure areas. A health risk warning system was set for "action" (exceeds 100% of the annual average NO(2) guideline), for "alert" (between 66-100% of the annual average NO(2) guideline) and for "some concern" (between 33-66% of the annual average NO(2) guideline). Although no areas were exposed to an action level, many locations in the study area could have levels of "some concern". Potential risk to the population was analyzed by spatial interpolation of the nitrogen dioxide concentration with population data. The result indicated the number of people exposed to air pollution, as well as the areas which have a high risk to air pollution. About 88.3% of the total population in the study area live in areas where levels of air pollution are designated as being in the "some concern" zone. About 6.7% of the registered population have their residence in an area where action should be taken for air quality management. The study demonstrates the application of GIS-based prediction for the evaluation of exposure mapping, in order to determine the spatial extent and frequency of areas where pollution levels exceed target values, and their potential health impacts. 相似文献
16.
17.
Prohaska T Quétel CR Hennessy C Liesegang D Papadakis I Taylor PD Latkoczy C Hann S Stingeder G 《Journal of environmental monitoring : JEM》2000,2(6):613-620
Many fields in environmental analytical chemistry deal with very low limits and thresholds as set by governmental legislations or transnational regulations. The need for the accuracy, comparability and traceability of analytical measurements in environmental analytical chemistry has significantly increased and total uncertainties are even asked for by accreditation bodies of environmental laboratories. This paper addresses achieving these goals to guarantee accuracy, quality control, quality assurance or validation of a method by means of certified reference materials. The assessment of analytical results in certified reference materials must be as accurate as possible and every single step has to be fully evaluated. This paper presents the SI-traceable certification of Cu, Cr, Cd and Pb contents in geological and environmentally relevant matrices (three sediments and one fly ash sample). Certification was achieved using isotope dilution (ID) ICPMS as a primary method of measurement. In order to reduce significantly the number of analytical steps and intermediate samples a multiple spiking approach was developed. The full methodology is documented and total uncertainty budgets are calculated for all certified values. A non-element specific sample digestion process was optimised. All wet chemical digestion methods examined resulted in a more or less pronounced amount of precipitate. It is demonstrated that these precipitates originate mainly from secondary formation of fluorides (essentially CaF2) and that their formation takes place after isotopic equilibration. The contribution to the total uncertainty of the final values resulting from the formation of such precipitates was in general < 0.1% for all investigated elements. Other sources of uncertainty scrutinised included the moisture content determination, procedural blank determination, cross-contamination from the different spike materials, correction for spectral interferences, instrumental background and deadtime effects, as well as the use of either certified values or IUPAC data in the IDMS equation. The average elemental content in the sediment samples was 30-130 micrograms g-1 for Pb, 0.5-3 micrograms g-1 for Cd and 50-70 micrograms g-1 for Cu. Cr was measured in one sample and was about 60 micrograms g-1. The concentrations in the fly ash sample were up to 2 orders of magnitude higher. Expanded uncertainty for the investigated elements was about 3% (coverae factor k = 2) except for Cr, (measured by high resolution ICPMS), for which the expanded uncertainty was about 7% (k = 2). 相似文献
18.
Biological responses of workplace particles and their association with adverse health effects on miners 总被引:2,自引:0,他引:2
Chen W Stempelmann K Rehn S Diederichs H Rehn B Bruch J 《Journal of environmental monitoring : JEM》2004,6(12):967-972
Epidemiological research has demonstrated the relationship between exposure to quartz dust and an elevated risk of pneumoconiosis and possible elevated risk of cancer. The current study was designed to evaluate the biological responses of workplace particles containing crystalline silica using an in vitro cell test. Respirable particle samples were sampled from four tin mines, where the standardized mortality ratio (SMR) for pneumoconiosis was 51.6 and SMR for lung cancer was 2.2 in dust-exposed miners. Alveolar macrophages (AM) are considered as the target cells for primary dust effects. The samples were then measured at 15, 30, 60 and 120 microg particle per 10(6) AM for cytoxicity with the release of glucuronidase, lactate dehydrogenase, for reactive oxygen damage with H(2)O(2) release, and for ability to induce fibrosis using the secretion of tumor necrosis factor-alpha (TNF-alpha). Pure quartz (DQ12) and corundum were used as controls. The results showed the samples from tin mines caused a higher cytoxicity when compared to corundum, yet lower when compared to quartz. However, reactive oxygen species release (148-177 nmol/3 x 10(5) AM in high concentration of 120 microg/10(6) AM) induced by the samples were significantly higher than that induced by quartz (57 nmol/3 x 10(5) AM) and corundum (62 nmol/3 x 10(5) AM). Furthermore, particle samples induced higher TNF-alpha secretion than corundum, the samples from Limu tin mine induced much higher TNF-alpha levels than that induced by DQ12 quartz. The results from the in vitro tests help elucidate the degree of hazard of dust particles in tin mines. The in vitro reaction patterns of AM also constitute a powerful tool to monitor biological and pathogenic responses of humans following dust particle exposure. 相似文献
19.
H. W. De Koning 《Environmental monitoring and assessment》1981,1(2):129-141
A procedure is outlined to make a rapid across-the-board estimate of the quantities of air, water and land pollution in a given region or country. Such inventories, though not as detailed as one would eventually need, provide a first integrated view of the magnitude and quantity of pollution and can contribute to effective and comprehensive pollution control planning.This article is abstracted from Rapid Assessment of Air, Water and Land Pollution Sources, WHO Internal Document EFP/81.14, World Health Organization, Geneva, Switzerland, 1981. 相似文献