首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  The ability of populations to be connected across large landscapes via dispersal is critical to long-term viability for many species. One means to mitigate population isolation is the protection of movement corridors among habitat patches. Nevertheless, the utility of small, narrow, linear features as habitat corridors has been hotly debated. Here, we argue that analysis of movement across continuously resistant landscapes allows a shift to a broader consideration of how landscape patterns influence connectivity at scales relevant to conservation. We further argue that this change in scale and definition of the connectivity problem improves one's ability to find solutions and may help resolve long-standing disputes regarding scale and definition of movement corridors and their importance to population connectivity. We used a new method that combines empirically derived landscape-resistance maps and least-cost path analysis between multiple source and destination locations to assess habitat isolation and identify corridors and barriers to organism movement. Specifically, we used a genetically based landscape resistance model for American black bears ( Ursus americanus ) to identify major movement corridors and barriers to population connectivity between Yellowstone National Park and the Canadian border. Even though western Montana and northern Idaho contain abundant public lands and the largest wilderness areas in the contiguous United States, moving from the Canadian border to Yellowstone Park along those paths indicated by modeled gene flow required bears to cross at least 6 potential barriers. Our methods are generic and can be applied to virtually any species for which reliable maps of landscape resistance can be developed.  相似文献   

2.
Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs’ specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.  相似文献   

3.
Propagule pressure can determine the success or failure of invasive plant range expansion. Range expansion takes place at large spatial scales, often encompassing many types of land cover, yet the effect of landscape context on propagule pressure remains largely unknown. Many studies have reported a positive correlation between invasive plant abundance and human land use; increased propagule pressure in these landscapes may be responsible for this correlation. We tested the hypothesis that increased rates of seed dispersal by fig-eating birds, which are more common in urban habitats, result in an increase in invasive strangler fig abundance in landscapes dominated by human land use. We quantified abundance of an invasive species (Ficus microcarpa) and a native species (F. aurea) of strangler fig in plots spanning the entire range of human land use in South Florida, USA, from urban parking lots to native forest. We then compared models that predicted juvenile fig abundance based on distance to adult fig seed sources and fig-eating bird habitat quality with models that lacked one or both of these terms. The best model for juvenile invasive fig abundance included both distance to adult and fig-eating bird habitat terms, suggesting that landscape effects on invasive fig abundance are mediated by seed-dispersing birds. In contrast, the best model for juvenile native fig abundance included only presence/absence of adults, suggesting that distance from individual adult trees may have less effect on seed limitation for a native species compared to an invasive species undergoing range expansion. However, models for both species included significant effects of adult seed sources, implying that juvenile abundance is limited by seed arrival. This result was corroborated by a seed addition experiment that indicated that both native and invasive strangler figs were strongly seed limited. Understanding how landscape context affects the mechanisms of plant invasion may lead to better management techniques. Our results suggest that prioritizing removal of adult trees in sites with high fig-eating bird habitat may be the most effective method to control F. microcarpa abundance.  相似文献   

4.
Area of habitat (AOH) is defined as the “habitat available to a species, that is, habitat within its range” and is calculated by subtracting areas of unsuitable land cover and elevation from the range. The International Union for the Conservation of Nature (IUCN) Habitats Classification Scheme provides information on species habitat associations, and typically unvalidated expert opinion is used to match habitat to land-cover classes, which generates a source of uncertainty in AOH maps. We developed a data-driven method to translate IUCN habitat classes to land cover based on point locality data for 6986 species of terrestrial mammals, birds, amphibians, and reptiles. We extracted the land-cover class at each point locality and matched it to the IUCN habitat class or classes assigned to each species occurring there. Then, we modeled each land-cover class as a function of IUCN habitat with (SSG, using) logistic regression models. The resulting odds ratios were used to assess the strength of the association between each habitat and land-cover class. We then compared the performance of our data-driven model with those from a published translation table based on expert knowledge. We calculated the association between habitat classes and land-cover classes as a continuous variable, but to map AOH as binary presence or absence, it was necessary to apply a threshold of association. This threshold can be chosen by the user according to the required balance between omission and commission errors. Some habitats (e.g., forest and desert) were assigned to land-cover classes with more confidence than others (e.g., wetlands and artificial). The data-driven translation model and expert knowledge performed equally well, but the model provided greater standardization, objectivity, and repeatability. Furthermore, our approach allowed greater flexibility in the use of the results and uncertainty to be quantified. Our model can be modified for regional examinations and different taxonomic groups.  相似文献   

5.
Two woodland caribou ( Rangifer tarandus caribou ) ecotypes, mountain and northern, were translocated to the southern Selkirk Mountains in northern Idaho (U.S.A.) to augment a remnant subpopulation. The translocation resulted in an additional subpopulation that used the general area of the release site. The mountain ecotype stock exhibited patterns of movement and habitat use similar to those of the resident subpopulation. The northern ecotype stock exhibited more variable habitat use, especially in the first year after translocation. Dispersal of the northern stock was not as extensive as that of the mountain stock. Fourteen of 22 caribou from the northern stock and 6 of 18 caribou from the mountain stock died during the 3-year period after the release. Our results suggest that when donor subpopulations must be used that do not closely compare with resident subpopulations extinct or extant, larger numbers of individuals may be needed to establish a self-sustaining population.  相似文献   

6.
《Ecological modelling》2005,181(2-3):203-213
Assessment of population dynamics is central to population dynamics and conservation. In structured populations, matrix population models based on demographic data have been widely used to assess such dynamics. Although highlighted in several studies, the influence of heterogeneity among individuals in demographic parameters and of the possible correlation among these parameters has usually been ignored, mostly because of difficulties in estimating such individual-specific parameters. In the kittiwake (Rissa tridactyla), a long-lived seabird species, differences in survival and breeding probabilities among individual birds are well documented. Several approaches have been used in the animal ecology literature to establish the association between survival and breeding rates. However, most are based on observed heterogeneity between groups of individuals, an approach that seldom accounts for individual heterogeneity. Few attempts have been made to build models permitting estimation of the correlation between vital rates. For example, survival and breeding probability of individual birds were jointly modelled using logistic random effects models by [Cam, E., Link, W.A., Cooch, E.G., Monnat, J., Danchin, E., 2002. Individual covariation in life-history traits: seeing the trees despite the forest. Am. Naturalist, 159, in press]. This is the only example in wildlife animal populations we are aware of. Here we adopt the survival analysis approaches from epidemiology. We model the survival and the breeding probability jointly using a normally distributed random effect (frailty). Conditionally on this random effect, the survival time is modelled assuming a lognormal distribution, and breeding is modelled with a logistic model. Since the deaths are observed in year-intervals, we also take into account that the data are interval censored. The joint model is estimated using classic frequentist methods and also MCMC techniques in Winbugs. The association between survival and breeding attempt is quantified using the standard deviation of the random frailty parameters. We apply our joint model on a large data set of 862 birds, that was followed from 1984 to 1995 in Brittany (France). Survival is positively correlated with breeding indicating that birds with greater inclination to breed also had higher survival.  相似文献   

7.
Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically prioritize areas for improvement of local habitat quality, with areas not meeting minimum thresholds being deemed inappropriate for pursuit of restoration activities.  相似文献   

8.
Abstract: Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest ( positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area ( both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.  相似文献   

9.
Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and regression tree (CRT), habitat suitability index (HSI), forest structure database (FS), and habitat association database (HA). We focused our comparison on models for five priority forest-breeding species in the Central Hardwoods Bird Conservation Region: Acadian Flycatcher, Cerulean Warbler, Prairie Warbler, Red-headed Woodpecker, and Worm-eating Warbler. Lacking complete knowledge on the distribution and abundance of each species with which we could illuminate differences between approaches and provide strong grounds for recommending one approach over another, we used two approaches to compare models: rank correlations among model outputs and comparison of spatial correspondence. In general, rank correlations were significantly positive among models for each species, indicating general agreement among the models. Worm-eating Warblers had the highest pairwise correlations, all of which were significant (P < 0.05). Red-headed Woodpeckers had the lowest agreement among models, suggesting greater uncertainty in the relative conservation value of areas within the region. We assessed model uncertainty by mapping the spatial congruence in priorities (i.e., top ranks) resulting from each model for each species and calculating the coefficient of variation across model ranks for each location. This allowed identification of areas more likely to be good targets of conservation effort for a species, those areas that were least likely, and those in between where uncertainty is higher and thus conservation action incorporates more risk. Based on our results, models developed independently for the same purpose (conservation planning for a particular species in a particular geography) yield different answers and thus different conservation strategies. We assert that using only one habitat model (even if validated) as the foundation of a conservation plan is risky. Using multiple models (i.e., ensemble prediction) can reduce uncertainty and increase efficacy of conservation action when models corroborate one another and increase understanding of the system when they do not.  相似文献   

10.
Genetic mechanisms determining habitat selection and specialization of individuals within species have been hypothesized, but not tested at the appropriate individual level in nature. In this work, we analyzed habitat selection for 139 GPS-collared caribou belonging to 3 declining ecotypes sampled throughout Northwestern Canada. We used Resource Selection Functions comparing resources at used and available locations. We found that the 3 caribou ecotypes differed in their use of habitat suggesting specialization. On expected grounds, we also found differences in habitat selection between summer and winter, but also, originally, among the individuals within an ecotype. We next obtained Single Nucleotide Polymorphisms (SNPs) for the same caribou individuals, we detected those associated to habitat selection, and then identified genes linked to these SNPs. These genes had functions related in other organisms to habitat and dietary specializations, and climatic adaptations. We therefore suggest that individual variation in habitat selection was based on genotypic variation in the SNPs of individual caribou, indicating that genetic forces underlie habitat and diet selection in the species. We also suggest that the associations between habitat and genes that we detected may lead to lack of resilience in the species, thus contributing to caribou endangerment. Our work emphasizes that similar mechanisms may exist for other specialized, endangered species.  相似文献   

11.
Understanding how habitat fragmentation affects individual species is complicated by challenges associated with quantifying species-specific habitat and spatial variability in fragmentation effects within a species’ range. We aggregated a 29-year breeding survey data set for the endangered marbled murrelet (Brachyramphus marmoratus) from >42,000 forest sites throughout the Pacific Northwest (Oregon, Washington, and northern California) of the United States. We built a species distribution model (SDM) in which occupied sites were linked with Landsat imagery to quantify murrelet-specific habitat and then used occupancy models to test the hypotheses that fragmentation negatively affects murrelet breeding distribution and that these effects are amplified with distance from the marine foraging habitat toward the edge of the species’ nesting range. Murrelet habitat declined in the Pacific Northwest by 20% since 1988, whereas the proportion of habitat comprising edges increased by 17%, indicating increased fragmentation. Furthermore, fragmentation of murrelet habitat at landscape scales (within 2 km of survey stations) negatively affected occupancy of potential breeding sites, and these effects were amplified near the range edge. On the coast, the odds of occupancy decreased by 37% (95% confidence interval [CI] –54 to 12) for each 10% increase in edge habitat (i.e., fragmentation), but at the range edge (88 km inland) these odds decreased by 99% (95% CI 98 to 99). Conversely, odds of murrelet occupancy increased by 31% (95% CI 14 to 52) for each 10% increase in local edge habitat (within 100 m of survey stations). Avoidance of fragmentation at broad scales but use of locally fragmented habitat with reduced quality may help explain the lack of murrelet population recovery. Further, our results emphasize that fragmentation effects can be nuanced, scale dependent, and geographically variable. Awareness of these nuances is critical for developing landscape-level conservation strategies for species experiencing broad-scale habitat loss and fragmentation.  相似文献   

12.
Abstract: Although there has been a call for the integration of behavioral ecology and conservation biology, there are few tools currently available to achieve this integration. Explicitly including information about behavioral strategies in population viability analyses may enhance the ability of conservation biologists to understand and estimate patterns of extinction risk. Nevertheless, most behavioral‐based PVA approaches require detailed individual‐based data that are rarely available for imperiled species. We present a mechanistic approach that incorporates spatial and demographic consequences of behavioral strategies into population models used for conservation. We developed a stage‐structured matrix model that includes the costs and benefits of movement associated with 2 habitat‐selection strategies (philopatry and direct assessment). Using a life table for California sea lions (Zalophus californianus), we explored the sensitivity of model predictions to the inclusion of these behavioral parameters. Including behavioral information dramatically changed predicted population sizes, model dynamics, and the expected distribution of individuals among sites. Estimated population sizes projected in 100 years diverged up to 1 order of magnitude among scenarios that assumed different movement behavior. Scenarios also exhibited different model dynamics that ranged from stable equilibria to cycles or extinction. These results suggest that inclusion of behavioral data in viability models may improve estimates of extinction risk for imperiled species. Our approach provides a simple method for incorporating spatial and demographic consequences of behavioral strategies into population models and may be easily extended to other species and behaviors to understand the mechanisms of population dynamics for imperiled populations.  相似文献   

13.
New approaches to modelling fish-habitat relationships   总被引:1,自引:0,他引:1  
Ecologists often develop models that describe the relationship between faunal communities and their habitat. Coral reef fishes have been the focus of numerous such studies, which have used a wide range of statistical tools to answer an equally wide range of questions. Here, we apply a series of both conventional statistical techniques (linear and generalized additive regression models) and novel machine-learning techniques (the support vector machine and three ensemble techniques used with regression trees) to predict fish species richness, biomass, and diversity from a range of habitat variables. We compare the techniques in terms of their predictive performance, and we compare a subset of the models in terms of the influence each habitat variable has for the predictions. Prediction errors are estimated by cross-validation, and variable importance is assessed using permutations of individual variable values. For predictions of species richness and diversity the tree-based models generally and the random forest model specifically are superior (produce the lowest errors). These model types are all able to model both nonlinear and interaction effects. The linear model, unable to model either effect type, performs the worst (produces the highest errors). For predictions of biomass, the generalized additive model is superior, and the support vector machine performs the worst. Depth range, the difference between maximum and minimum water depth at a given site, is identified as the most important variable in the majority of models predicting the three fish community variables. However, variable importance is highly dependent upon model type, which leads to questions regarding the interpretation of variable importance and its proper use as an indicator of causality. The representation of ecological relationships by tree-based ensemble learners will improve predictive performance, and provide a new avenue for exploring ecological relationships, both statistical and causal.  相似文献   

14.
Localized stressors compound the ongoing climate-driven decline of coral reefs, requiring natural resource managers to work with rapidly shifting paradigms. Trait-based adaptive management (TBAM) is a new framework to help address changing conditions by choosing and implementing management actions specific to species groups that share key traits, vulnerabilities, and management responses. In TBAM maintenance of functioning ecosystems is balanced with provisioning for human subsistence and livelihoods. We first identified trait-based groups of food fish in a Pacific coral reef with hierarchical clustering. Positing that trait-based groups performing comparable functions respond similarly to both stressors and management actions, we ascertained biophysical and socioeconomic drivers of trait-group biomass and evaluated their vulnerabilities with generalized additive models. Clustering identified 7 trait groups from 131 species. Groups responded to different drivers and displayed divergent vulnerabilities; human activities emerged as important predictors of community structuring. Biomass of small, solitary reef-associated species increased with distance from key fishing ports, and large, solitary piscivores exhibited a decline in biomass with distance from a port. Group biomass also varied in response to different habitat types, the presence or absence of reported dynamite fishing activity, and exposure to wave energy. The differential vulnerabilities of trait groups revealed how the community structure of food fishes is driven by different aspects of resource use and habitat. This inherent variability in the responses of trait-based groups presents opportunities to apply selective TBAM strategies for complex, multispecies fisheries. This approach can be widely adjusted to suit local contexts and priorities.  相似文献   

15.
Few researchers have developed large-scale habitat models for sympatric carnivore species. We created habitat models for red foxes (Vulpes vulpes), coyotes (Canis latrans) and bobcats (Lynx rufus) in southern Illinois, USA, using the Penrose distance statistic, remotely sensed landscape data, and sighting location data within a GIS. Our objectives were to quantify and spatially model potential habitat differences among species. Habitat variables were quantified for 1-km2 buffered areas around mesocarnivore sighting locations. Following variable reduction procedures, five habitat variables (percentage of grassland patches, interspersion–juxtaposition of forest patches, mean fractal dimension of wetland patches and the landscape, and road density) were used for analysis. Only one variable differed (P < 0.05) between red fox and coyote sighting areas (road density) and bobcat and coyote sighting areas (mean fractal dimension of the landscape). However, all five variables differed between red fox and bobcat sighting areas, indicating considerable differences in habitat affiliation between this pair-group. Compared to bobcats, red fox sightings were affiliated with more grassland cover and larger grassland patches, higher road densities, lower interspersion and juxtaposition of forest patches, and lower mean fractal dimension of wetland patches. These differences can be explained by different life history requirements relative to specific cover types. We then used the Penrose distance statistic to create habitat models for red foxes and bobcats, respectively, based on the five-variable dataset. An independent set of sighting locations were used to validate these models; model fit was good with 65% of mesocarnivore locations within the top 50% of Penrose distance values. In general, red foxes were affiliated with mixtures of agricultural and grassland cover, whereas bobcats were associated with a combination of grassland, wetland, and forest cover. The greatest habitat overlap between red foxes and bobcats was found at the interface between forested areas and more open cover types. Our study provides insight into habitat overlap among sympatric mesocarnivores, and the distance-based modelling approach we used has numerous applications for modelling wildlife–habitat relationships over large scales.  相似文献   

16.
The Application of Neutral Landscape Models in Conservation Biology   总被引:14,自引:0,他引:14  
Neutral landscape models, derived from percolation theory in the field of landscape ecology, are grid-based maps in which complex habitat distributions are generated by random or fractal algorithms. This grid-based representation of landscape structure is compatible with the raster-based format of geographical information systems (GIS), which facilitates comparisons between theoretical and real landscapes. Neutral landscape models permit the identification of critical thresholds in connectivity, which can be used to predict when landscapes will become fragmented. The coupling of neutral landscape models with generalized population models, such as metapopulation theory, provides a null model for generating predictions about population dynamics in fragmented landscapes. Neutral landscape models can contribute to the following applications in conservation: (1) incorporation of complex spatial patterns in (meta)population models; (2) identification of species' perceptions of landscape structure; (3) determination of landscape connectivity; (4) evaluation of the consequences of habitat fragmentation for population subdivision; (5) identification of the domain of metapopulation dynamics; (6) prediction of the occurrence of extinction thresholds; ( 7) determination of the genetic consequences of habitat fragmentation; and (8) reserve design and ecosystem management. This generalized, spatially explicit framework bridges the gap between spatially implicit, patch-based models and spatially realistic GIS applications which are usually parameterized for a single species in a specific landscape. Development of a generalized, spatially explicit framework is essential in conservation biology because we will not be able to develop individual models for every species of management concern.  相似文献   

17.
Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies planning efforts to conserve regional habitat connectivity.  相似文献   

18.
Habitat loss and degradation are primary threats to amphibians and reptiles, but the relative effects of common land uses on assemblages and the mechanisms that underlie faunal responses are poorly studied. We reviewed the effects of four prevalent types of habitat alteration (urbanization, agriculture, livestock grazing, and silviculture) on amphibian and reptile species richness and abundance by summarizing reported responses in the literature and by estimating effect sizes across studies for species richness in each land‐use type. We then used a multinomial model to classify species as natural habitat specialists, generalists, and disturbed habitat specialists and examined variation in effect sizes for each land‐use type according to habitat specialization categories. There were mixed conclusions from individual studies, some reporting negative, neutral, or positive effects of land use on species richness and total abundance. A large proportion of studies reported species‐specific effects of individual species abundance. However, in our analysis of effect sizes, we found a general trend of negative effects of land use on species richness. We also demonstrate that habitat associations of common species and species turnover can explain variation in the effect of land use on herpetofauna. Our review highlights the pervasive negative effects of common land uses on amphibians and reptiles, the importance of identifying groups vulnerable to land‐use change (e.g., forest‐associated species) in conservation studies, and the potential influence of disturbance‐associated species on whole assemblage analyses.  相似文献   

19.
Habitat loss and fragmentation can negatively influence population persistence and biodiversity, but the effects can be mitigated if species successfully disperse between isolated habitat patches. Network models are the primary tool for quantifying landscape connectivity, yet in practice, an overly simplistic view of species dispersal is applied. These models often ignore individual variation in dispersal ability under the assumption that all individuals move the same fixed distance with equal probability. We developed a modeling approach to address this problem. We incorporated dispersal kernels into network models to determine how individual variation in dispersal alters understanding of landscape-level connectivity and implemented our approach on a fragmented grassland landscape in Minnesota. Ignoring dispersal variation consistently overestimated a population's robustness to local extinctions and underestimated its robustness to local habitat loss. Furthermore, a simplified view of dispersal underestimated the amount of habitat substructure for small populations but overestimated habitat substructure for large populations. Our results demonstrate that considering biologically realistic dispersal alters understanding of landscape connectivity in ecological theory and conservation practice.  相似文献   

20.
Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark‐monitoring data on large scales (100s–1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species‐level models had higher accuracy (? ≥ 0.69) and deviance explained (≥48%) than our order‐level model (? = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species‐specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species‐focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non‐extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across multiple maritime jurisdictions, and our approach provides a simple for method for testing the effectiveness of MPAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号