首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current regulatory environmental exposure assessments for decamethylcyclopentasiloxane (D5), used in a range of personal care products, are based on a number of erroneous assumptions. Using an estimated D5 flux to waste water of 11.6 mg cap−1 d−1, a 95.2% removal rate in Sewage Treatment Plants (STP) and a dilution factor of 10 results in modelled surface water concentrations that are up to an order of magnitude higher than concentrations observed downstream of STPs in two UK rivers. A GIS-based water quality model (LF2000-WQX) was used to predict concentrations of D5 in two UK rivers. Assuming the STP removal rate is reasonable, a waste water flux of 2.4 mg cap−1 d−1 is needed in order to obtain a reasonable match between predicted and observed in-river concentrations. This flux is consistent with measured effluent concentrations. The results highlight major uncertainties in estimating chemical emission rates for volatile chemicals used in personal care products and suggest that measured concentrations in waste water are needed to refine exposure assessments.  相似文献   

2.

This study investigated the characteristics of iron corrosion scales in pipes at tube well, overhead tank, and consumers’ end in older untreated water distribution system in Peshawar city, Pakistan. Effect of water quality conditions on corrosion scales and that of scales on drinking water quality in such systems was also assessed by undertaking a comparison with new piped distribution systems. The scales were analyzed for chemical composition and morphology using X-ray diffraction (XRD), inductively coupled plasma (ICP), and a scanning electron microscope (SEM), while water quality was examined for physicochemical and biological characteristics. The main crystalline phases of corrosion scales were goethite, magnetite, siderite, and quartz. From tube well to consumers’ end, goethite increased from 36 up to 48%, quartz declined from 22 to 15%, while magnetite fluctuated and siderite disappeared. Elemental composition of scales showed the deposition of Zn, Al, Mn, Cr, Pb, Cu, As, and Cd with Zn (13.9 g/kg) and Al (3.6 g/kg) in highest proportion. The SEM analysis illustrated the presence of microbial communities indicating the formation of biofilms in the corrosion scales. The significant difference (P <?0.05) in levels of dissolved oxygen (DO), Cl?, SiO44?, electrical conductivity (EC), SO42?, NO3?, alkalinity, hardness, and trace metals between old (DS-O) and new piped systems indicated their role in corrosion scale formation/destabilization and the effect of scale dissolution on water quality. In DS-O, EC, Cu, and Mn were significantly higher (P?<?0.05), whereas turbidity, EC, DO, and SiO44? significantly increased from source to consumers’ end implying a higher dissolution of scales and lowered corrosion rates in DS-O to utilize SiO44? and DO for iron oxidation.

  相似文献   

3.

This study has applied the concept of the hybrid PAC-UF process in the treatment of the final effluent of the palm oil industry for reuse as feedwater for low-pressure boilers. In a bench-scale set-up, a low-cost empty fruit bunch-based powdered activated carbon (PAC) was employed for upstream adsorption of biotreated palm oil mill effluent (BPOME) with the process conditions: 60 g/L dose of PAC, 68 min of mixing time and 200 rpm of mixing speed, to reduce the feedwater strength, alleviate probable fouling of the membranes and thus improve the process flux (productivity). Three polyethersulfone ultrafiltration membranes of molecular weight cut-off (MWCO) of 1, 5 and 10 kDa were investigated in a cross-flow filtration mode, and under constant transmembrane pressures of 40, 80, and 120 kPa. The permeate qualities of the hybrid processes were evaluated, and it was found that the integrated process with the 1 kDa MWCO UF membrane yielded the best water quality that falls within the US EPA reuse standard for boiler-feed and cooling water. It was also observed that the permeate quality is fit for extended reuse as process water in the cement, petroleum and coal industries. In addition, the hybrid system’s operation consumed 37.13 Wh m−3 of energy at the highest applied pressure of 120 kPa, which is far lesser than the typical energy requirement range (0.8–1.0 kWh m−3) for such wastewater reclamation.

  相似文献   

4.
The cytotoxic drug, cisplatin (cis-PtCl2(NH3)2), has been added to cultures of the marine macroalga, Ulva lactuca, under various experimental conditions. Both accumulation and internalisation over a 48 h period was greater when cisplatin was added to coastal sea water (salinity = 33) from a distilled water solution than when added to either sea water or estuarine water (salinity = 16.5) from a saline solution. This effect is attributed to the greater abundance of the more reactive monoaqua complex (cis-PtCl(OH2)(NH3)2+) in the distilled water solution and kinetic constraints on its conversion back to cis-PtCl2(NH3)2 in sea water. Despite its mode of action at the cellular level, cisplatin added up to concentrations of 150 nM did not incur a measurable reduction in the efficiency of photochemical energy conversion under any of experimental conditions tested.  相似文献   

5.
This study was conducted to analyze the genetic variability of Escherichia coli from domesticated animal wastes for microbial source tracking (MST) application in fecal contaminated shellfish growing waters of Xiangshan Bay, East China Sea. (GTG)5 primer was used to generate 1363 fingerprints from E. coli isolated from feces of known 9 domesticated animal sources around this shellfish culture area. Jackknife analysis of the complete (GTG)5-PCR DNA fingerprint library indicated that isolates were assigned to the correct source groups with an 84.28% average rate of correct classification. Based on one-year source tracking data, the dominant sources of E. coli were swine, chickens, ducks and cows in this water area. Moreover, annual and spatial changes of E. coli concentrations and host sources may affect the level and distribution of zoonotic pathogen species in waters. Our findings will further contribute to preventing fecal pollution in aquatic environments and quality control of shellfish.  相似文献   

6.
Chu L  Wang J  Dong J  Liu H  Sun X 《Chemosphere》2012,86(4):409-414
In this study the treatment of coking wastewater was investigated by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Particular attention was paid to the effect of initial pH, dosage of H2O2 and to improvement in biodegradation. The results showed that higher COD and total phenol removal rates were achieved with a decrease in initial pH and an increase in H2O2 dosage. At an initial pH of less than 6.5 and H2O2 concentration of 0.3 M, COD removal reached 44-50% and approximately 95% of total phenol removal was achieved at a reaction time of 1 h. The oxygen uptake rate of the effluent measured at a reaction time of 1 h increased by approximately 65% compared to that of the raw coking wastewater. This indicated that biodegradation of the coking wastewater was significantly improved. Several organic compounds, including bifuran, quinoline, resorcinol and benzofuranol were removed completely as determined by GC-MS analysis. The advanced Fenton oxidation process is an effective pretreatment method for the removal of organic pollutants from coking wastewater. This process increases biodegradation, and may be combined with a classical biological process to achieve effluent of high quality.  相似文献   

7.
The photooxidation of α-pinene in the presence of NO2, with and without added NaNO3 seed particles, has been studied in a large-diameter flow tube. Particles formed by homogeneous nucleation and by condensation on the pre-existing seeds were sampled at various stages of the reaction, dried using four diffusion dryers, size selected at different mobility diameters (dm) using a differential mobility analyzer (DMA), and characterized with a single particle mass spectrometer (SPLAT II). It was found that homogeneously nucleated particles are spherical, have a density (ρ) of 1.25 ± 0.02 g cm?3 (±2σ) and contain a significant amount of organic nitrates. The mass spectra of the low volatility products condensed on the NaNO3 seed particles were found to be virtually the same as in the case of homogeneous nucleation. The data show that the presence of even a submonolayer of organics on the NaNO3 particles causes water retention that leads to a decrease in particle density and that the amount of water retained increases with organic coating thickness. Thicker coatings appear to inhibit water evaporation from the particle seeds altogether. This suggests that in the atmosphere, where low volatility organics are plentiful, some hygroscopic salts will retain water and have different densities and refractive indices than expected in the absence of the organic coating. This water retention combined with the organic shell on the particles can potentially impact light scattering by these particles and activity as cloud condensation nuclei (CCN), as well as heterogeneous chemistry and photochemistry on the particles.  相似文献   

8.
Evaluation of aqueous uranium (U) uptake and depuration in larvae of the midge Chironomus tentans were investigated in two separated experiments. First, a static-renewal experiment was performed with 10-d old C. tentans larvae exposed to 300 μg U/L. The animals steadily accumulated U (Ku = 20.3) approaching steady-state conditions (BAF = 56) in approximately 9-11 d. However, accumulated U was readily depurated (Kd = 0.36) with U tissue concentration decreasing rapidly within 3 d of the larvae being placed in clean water (t1/2 = 1.9 d). Also, the growth of C. tentans larvae appeared to decrease after 6-11 d of U exposure, probably due to the reallocation of resources into U detoxification mechanisms. However, growth significantly increased once C. tentans were transferred to clean water. A separate short-term experiment was performed to evaluate the possible mechanism of U uptake in this invertebrate. Results suggested a passive mechanism of U uptake coupled with an active mechanism of U depuration but no details related to the type of mechanisms or pathway was investigated.  相似文献   

9.
The chronic toxicity of zinc oxide nanoparticles (ZnO-NP) to Folsomia candida was determined in natural soil. To unravel the contribution of particle size and free zinc to NP toxicity, non-nano ZnO and ZnCl2 were also tested. Zinc concentrations in pore water increased with increasing soil concentrations, with Freundlich sorption constants Kf of 61.7, 106 and 96.4 l/kg (n = 1.50, 1.34 and 0.42) for ZnO-NP, non-nano ZnO and ZnCl2 respectively. Survival of F. candida was not affected by ZnO-NP and non-nano ZnO at concentrations up to 6400 mg Zn/kg d.w. Reproduction was dose-dependently reduced with 28-d EC50s of 1964, 1591 and 298 mg Zn/kg d.w. for ZnO-NP, non-nano ZnO and ZnCl2, respectively. The difference in EC50s based on measured pore water concentrations was small (7.94-16.8 mg Zn/l). We conclude that zinc ions released from NP determine the observed toxic effects rather than ZnO particle size.  相似文献   

10.
Zerovalent iron powder (ZVI or Fe0) and nanoparticulate ZVI (nZVI or nFe0) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe0 and nFe0. Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the β-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L−1) undergo first-order decay with half-lives of about 60.3 ± 3.1 and 43.5 ± 2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t1/2 of about 11.5 ± 0.6 and 11.2 ± 0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe0 consumption, shortening the service life of Fe0 treatment systems.  相似文献   

11.
Management of soils to reduce the amount of PM10 emitted during agricultural tillage operations is important for attainment of air quality standards in California's San Joaquin Valley (SJV). The purpose of this study was to improve and expand upon earlier work of predicting tillage-generated dust emissions based on soil properties. We focus on gravimetric soil water content (GWC) and soil texture. A mechanical laboratory dust generator was used to test 23 soils collected for this study. Averaged results showed PM10 concentrations (mg m?3) increased logarithmically as GWC decreased below soil water potentials of ?1500 kPa. Soils with clay contents less than about 10% by weight began to emit PM10 at GWCs 1.5–4 times their GWC at ?1500 kPa. Soils with clay contents greater than about 10% began to emit PM10 at GWC values closer to ?1500 kPa. We found no correlation between maximum PM10 concentrations, measured at low GWC values, and the %sand, %silt, or %clay in a soil. However, there was a significant correlation between the %silt to %clay ratio and PM10 concentrations. This not only suggests the dependence of dust emission magnitudes on the supply of particles of PM10 size, but also the importance of clay in stabilizing aggregates and maintaining higher amounts of capillary water at lower water potentials. Based on modeled results of pooled data, PM10 concentrations increased linearly (slope = 564) for every unit increase in the %silt to %clay ratio. However, when soils were separated into groups based on clay content, the slopes for PM10 concentrations vs. %silt to %clay ratio were texture dependent. The slope for soils with <10% clay (slope = 727) was 3.3 times greater than for soils with >20% clay (slope = 221). Improved PM10 emission prediction based on soil properties should improve management decisions aimed at reducing tillage-generated PM10.  相似文献   

12.
Cell lines of Etroplus suratensis established in our laboratory were evaluated for their potential use as screening tools for the ecotoxicological assessment of tannery effluent. The cytotoxic effect of tannery effluent in three cell lines derived from eye, kidney and gill tissue of E. suratensis was assessed using multiple endpoints such as Neutral Red (NR) assay, Coomassie Blue (CB) protein assay and Alamar Blue (AB) assay. Acute toxicity tests on fish were conducted by exposing E. suratensis for 96 h to tannery effluent under static conditions. The toxic effect of tannery effluent on the survival of fish was found to be concentration and time dependent. The tannery effluent at the concentration of 15% caused 100% mortality at 96 h whereas the lower concentration (0.5%) caused 13.33% mortality. The cytotoxicity of tannery effluent was found to be similar in the three cell lines tested, independent of the toxic endpoints employed. EC50 values, the effective concentration of tannery effluent resulting in 50% inhibition of cytotoxicity parameters after 48 h exposure to tannery effluent were calculated for eye, kidney and gill cell lines using NR uptake, AB and cell protein assays. Statistical analysis revealed good correlation with r2 = 0.95-0.99 for all combinations between endpoints employed. Linear correlations between each in vitro EC50 and the in vivo LC50 data, were highly significant p < 0.001 with r2 = 0.977, 0.968 and 0.906 for AB50, NR50, and CB50, respectively.  相似文献   

13.
The “Stockholm Trial” involved a road pricing system to improve the air quality and reduce traffic congestion. The test period of the trial was January 3–July 31, 2006. Vehicles travelling into and out of the charge cordon were charged for every passage during weekdays. The amount due varied during the day and was highest during rush hours (20 SEK = 2.2 EUR, maximum 60 SEK per day). Based on measured and modelled changes in road traffic it was estimated that this system resulted in a 15% reduction in total road use within the charged cordon. Total traffic emissions in this area of NOx and PM10 fell by 8.5% and 13%, respectively. Air quality dispersion modelling was applied to assess the effect of the emission reductions on ambient concentrations and population exposure. For the situations with and without the trial, meteorological conditions and other emissions than from road traffic were kept the same. The calculations show that, with a permanent congestion tax system like the Stockholm Trial, the annual average NOx concentrations would be lower by up to 12% along the most densely trafficked streets. PM10 concentrations would be up to 7% lower. The limit values for both PM10 and NO2 would still be exceeded along the most densely trafficked streets. The total population exposure of NOx in Greater Stockholm (35 × 35 km with 1.44 million people) is estimated to decrease with a rather modest 0.23 μg m?3. However, based on a long-term epidemiological study, that found an increased mortality risk of 8% per 10 μg m?3 NOx, it is estimated that 27 premature deaths would be avoided every year. According to life-table analysis this would correspond to 206 years of life gained over 10 years per 100 000 people following the trial if the effects on exposures would persist. The effect on mortality is attributed to road traffic emissions (likely vehicle exhaust particles); NOx is merely regarded as an indicator of traffic exposure. This is only the tip of the ice-berg since reductions are expected in both respiratory and cardiovascular morbidity. This study demonstrates the importance of not only assessing the effects on air quality limit values, but also to make quantitative estimates of health impacts, in order to justify actions to reduce air pollution.  相似文献   

14.
During the summertime of 2007/2008, carbon dioxide (CO2) and methane (CH4) fluxes across air–water interface were investigated in the littoral zones of Lake Mochou and Lake Tuanjie, east Antarctica, using a static chamber technique. The mean fluxes of CO2 and CH4 were ?70.8 mgCO2 m?2 h?1 and 144.6 μgCH4 m?2 h?1, respectively, in the littoral zone of Lake Mochou; The mean fluxes were ?36.9 mgCO2 m?2 h?1 and 109.8 μgCH4 m?2 h?1, respectively, in the littoral zone of Lake Tuanjie. Their fluxes showed large temporal and spatial dynamics. The CO2 fluxes showed a significantly negative correlation with daily total radiation (DTR) and a weakly negative correlation with air temperature and water temperature, indicating that sunlight intensity controlled the magnitude of CO2 fluxes from the open lakes. The CH4 fluxes significantly correlated with local air temperature, water table and total dissolved solids (TDS), indicating that they were the predominant factors influencing CH4 fluxes. Summertime CO2 budgets in the littoral zones of Lake Mochou and Lake Tuanjie were estimated to be ?152.9 gCO2 m?2 and ?79.7 gCO2 m?2, respectively, and net CH4 emissions were estimated to be 312.3 mgCH4 m?2 and 237.2 mgCH4 m?2, respectively. Our results show that shallow, open, alga-rich lakes might be strong summertime CO2 absorbers and small CH4 emitters during the open water in coastal Antarctica.  相似文献   

15.
The presence of triclosan, a widely-used antibacterial chemical, is currently unknown in higher trophic-level species such as marine mammals. Blood plasma collected from wild bottlenose dolphins (Tursiops truncatus) in Charleston, SC (CHS) (n = 13) and Indian River Lagoon, FL (IRL) (n = 13) in 2005 was analyzed for triclosan. Plasma concentrations in CHS dolphins ranged from 0.12 to 0.27 ng/g wet weight (mean 0.18 ng/g), with 31% of the sampled individuals having detectable triclosan. The mean IRL dolphin plasma concentrations were 0.072 ng/g wet weight (range 0.025–0.11 ng/g); 23% of the samples having detectable triclosan. In the CHS area, triclosan effluent values from two WWTP were both 190 ng/L and primary influents were 2800 ng/L and 3400 ng/L. Triclosan values in CHS estuarine surface water samples averaged 7.5 ng/L (n = 18) ranging from 4.9 to 14 ng/L. This is the first study to report bioaccumulation of anthropogenic triclosan in a marine mammal highlighting the need for further monitoring and assessment.  相似文献   

16.
Bioassays using Daphnia pulex and Moina micrura were designed to detect cyanobacterial neurotoxins in raw water samples. Phytoplankton and cyanotoxins from seston were analyzed during 15 months in a eutrophic reservoir. Effective time to immobilize 50% of the exposed individuals (ET50) was adopted as the endpoint. Paralysis of swimming movements was observed between ∼0.5-3 h of exposure to lake water containing toxic cyanobacteria, followed by an almost complete recovery of the swimming activity within 24 h after being placed in control water. The same effects were observed in bioassays with a saxitoxin-producer strain of Cylindrospermopsis raciborskii isolated from the reservoir. Regression analysis showed significant relationships between ET50vs. cell density, biomass and saxitoxins content, suggesting that the paralysis of Daphnia in lake water samples was caused by saxitoxins found in C. raciborskii. Daphnia bioassay was found to be a sensitive method for detecting fast-acting neurotoxins in natural samples, with important advantages over mouse bioassays.  相似文献   

17.
A three-part study was conducted to quantify the impact of landscaped vegetation on air quality in a rapidly expanding urban area in the arid southeastern United States. The study combines in situ, plant-level measurements, a spatial emissions inventory, and a photochemical box model. Maximum plant-level basal emission rates were moderate: 18.1 μgC gdw?1 h?1 (Washingtonia spp., palms) for isoprene and 9.56 μgC gdw?1 h?1 (Fraxinus velutina, Arizona ash) for monoterpenes. Sesquiterpene emission rates were low for plant species selected in this study, with no measurement exceeding 0.1 μgC gdw?1 h?1. The high ambient temperatures combined with moderate plant-level emission factors resulted in landscape emission factors that were low (250–640 μgC m?2 h?1) compared to more mesic environments (e.g., the southeastern United States). The Regional Atmospheric Chemistry Mechanism (RACM) was modified to include a new reaction pathway for ocimene. Using measured concentrations of anthropogenic hydrocarbons and other reactive air pollutants (NOx, ozone), the box model employing the RACM mechanism revealed that these modest emissions could have a significant impact on air quality. For a suburban location that was downwind of the urban core (high NOx; low anthropogenic hydrocarbons), biogenic terpenes increased time-dependent ozone production rates by a factor of 50. Our study demonstrates that low-biomass density landscapes emit sufficient biogenic terpenes to have a significant impact on regional air quality.  相似文献   

18.
To understand the effect of water level on CH4 emissions from an invasive Spartina alterniflora coastal brackish marsh, we measured CH4 emissions from intermittently and permanently (5 cm water depth) inundated mesocosms with or without N fertilizer added at a rate of 2.7 g N m?2. Dissolved CH4 concentrations in porewater and vertically-profiled sediment redox potential were measured, as were aboveground biomass and stem density of S. alterniflora. Mean CH4 fluxes during the growing season in permanently inundated mesocosms without and with N fertilizer were 1.03 and 1.73 mg CH4 m?2 h?1, respectively, which were significantly higher than in the intermittently inundated mesocosms. This response indicates that prolonged submergence of sediment, up to a water depth of 5 cm, stimulated CH4 release. Inundation did not greatly affect aboveground biomass and stem density, but did significantly reduce redox potential in sediment, which in turn stimulated CH4 production and increased the CH4 concentration of porewater, resulting in higher CH4 emission in the mesocosm. Our data showed that the stimulatory effect of shallow, permanent inundation on CH4 emission in S. alterniflora marsh sediment was due primarily to an improved methanogenic environment rather than an increase in plant-derived substrates and/or the number of gas emission pathways through the plant’s aerenchymal system.  相似文献   

19.
This research was conducted in the middle Duratón River (Central Spain), in the vicinity of Burgomillodo Reservoir. An industrial effluent enters the river 300 m downstream from the dam. Fluoride and turbidity levels significantly increased downstream from the effluent, these levels being to some extent affected by differential water releases from the dam. The community of submersed macrophytes exhibited slighter responses and, accordingly, lower discriminatory power than the community of benthic macroinvertebrates, this indicating that metrics and indices based on macroinvertebrates may be more suitable for the biological monitoring of water pollution and habitat degradation in dammed rivers receiving industrial effluents. However, in relation to fluoride bioaccumulation at the organism level, macrophytes (Fontinalis antipyretica and Potamogeton pectinatus) were as suitable bioindicators of fluoride pollution as macroinvertebrates (Ancylus fluviatilis and Pacifastacus leniusculus). Fluoride bioaccumulation in both hard and soft tissues of these aquatic organisms could be used as suitable bioindicator of fluoride pollution (even lower than 1 mg F L−1) in freshwater ecosystems. Echinogammarus calvus exhibited a great sensitivity to the toxicity of fluoride ions, with a 96 h LC50 of 7.5 mg F L−1 and an estimated safe concentration of 0.56 mg F L−1. The great capacity of E. calvus to take up and retain fluoride during exposures to fluoride ions would be a major cause of its great sensitivity to fluoride toxicity. It is concluded that the observed fluoride pollution might be partly responsible for the absence of this native amphipod downstream from the industrial effluent.  相似文献   

20.
The gas-phase photocatalytic oxidation (PCO) of pentane, i-pentane, hexane, i-hexane and heptane over illuminated titanium at ambient temperatures was studied in a continuous stirring-tank reactor and for different values of VOC feed concentrations and relative humidity levels. Conversions achieved were over 90% for residence times from 50 to 85 s and the only products formed were CO2 and H2O, while no catalyst deactivation was observed. The obtained results indicate that the molecular and stereochemical structures of the compounds play an important role in the reaction, as the rate was increasing with higher molecular weight, and the presence of a tertiary carbon atom enhanced the reactivity. It was also observed that the increase of the carbon chain by a methyl group had the same influence in the reaction rate in the case of both pentane and i-pentane, while the ratio of the rates for the linear and branched structure was the same for both C5 and C6 isomers. The presence of water in the system had an inhibitory effect in all cases. The PCO kinetics was well fit by a Langmuir–Hinshelwood model, modified so as to take into consideration the influence of water vapour. The rate constants ranged from 1.87 × 10?7 mol m?2 s?1 for pentane to 3.03 × 10?7 mol m?2 s?1 for heptane, and the VOC adsorption constants from 1.14 104 to 2.83 104 m3 mol?1, while the water adsorption constant was 11.2 m3 mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号