首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a lack of information on ammonia (NH3) emissions from cattle housing systems in Mediterranean countries, with most published data deriving from NW Europe. An investigation was carried out in NW Portugal to quantify NH3 emissions for the main types of dairy cattle buildings in Portugal, i.e. naturally ventilated buildings and outdoor concrete yards, and to derive robust emission factors (EFs) for these conditions and compare with EFs used elsewhere in Europe. Measurements were made throughout a 12-month period using the passive flux sampling method in the livestock buildings and the equilibrium concentration technique in outdoor yards.The mean NH3 emission factor for the whole housing system (buildings + outdoor yards) was 43.7 g NH3–N LU?1 day?1 and for outdoor concrete yards used by dairy cattle was 26.6 g NH3–N LU?1 day?1. Expressing NH3 emission in terms of the quantity of liquid milk produced gave similar values across the three dairy farms studied (with a mean of 2.3 kg N ton-milk?1 produced) and may have advantages when comparing different farming systems. In dairy houses with outdoor yards, NH3 emissions from the yard area contributed to 69–92% of total emissions from this housing system. Emissions were particularly important during spring and summer seasons from outdoor yards with NH3 emitted in this period accounting for about 72% of annual emissions from outdoor yards. Mean NH3 emission factors derived for this freestall housing system and outdoor concrete yards used by dairy cattle in Portugal were higher than those measured in northern Europe. In addition, values of animal N excretion estimated in this study were greater than official National standard values. If these emissions are typical for Portuguese dairy systems, then the current National inventory underestimates emissions from this source in NW of Portugal, because of the use of lower standard values of N excretion by dairy cattle.  相似文献   

2.
An agricultural ammonia (NH3) emission inventory in the North China Plain (NCP) on a prefecture level for the year 2004, and a 5 × 5 km2 resolution spatial distribution map, has been calculated for the first time. The census database from China's statistics datasets, and emission factors re-calculated by the RAINS model supported total emissions of 3071 kt NH3-N yr−1 for the NCP, accounting for 27% of the total emissions in China. NH3 emission from mineral fertilizer application contributed 1620 kt NH3-N yr−1, 54% of the total emission, while livestock emissions accounted for the remaining 46% of the total emissions, including 7%, 27%, 7% and 5% from cattle, pigs, sheep and goats, and poultry, respectively. A high-resolution spatial NH3 emissions map was developed based on 1 × 1 km land use database and aggregated to a 5 × 5 km grid resolution. The highest emission density value was 198 kg N ha−1 yr−1.  相似文献   

3.
Measurements of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) were made from 11 outdoor concrete yards used by livestock. Measurements of NH3 emission were made using the equilibrium concentration technique while closed chambers were used to measure N2O and CH4 emissions. Outdoor yards used by livestock proved to be an important source of NH3 emission. Greatest emission rates were measured from dairy cow feeding yards, with a mean of 690 mg NH3-N m−2 h−1. Smaller emission rates were measured from sheep handling areas, dairy cow collecting yards, beef feeding yards and a pig loading area, with respective mean emission rates of 440, 280, 220 and 140 mg NH3-N m−2 h−1. Emission rates of N2O and CH4 were much smaller and for CH4, in particular, emission rates were influenced greatly by the presence or absence of dung on the measurement area.  相似文献   

4.
A budget for the methane (CH4) cycle in the Xilin River basin of Inner Mongolia is presented. The annual CH4 budget in this region depends primarily on the sum of atmospheric CH4 uptake by upland soils, emission from small wetlands, and emission from grazing ruminants (sheep, goats, and cattle). Flux rates for these processes were averaged over multiple years with differing summer rainfall. Although uplands constitute the vast majority of land area, they consume much less CH4 per unit area than is emitted by wetlands and ruminants. Atmospheric CH4 uptake by upland soils was ?3.3 and ?4.8 kg CH4 ha?1 y?1 in grazed and ungrazed areas, respectively. Average CH4 emission was 791.0 kg CH4 ha?1 y?1 from wetlands and 8.6 kg CH4 ha?1 y?1 from ruminants. The basin area-weighted average of all three processes was 6.8 kg CH4 ha?1 y?1, indicating that ruminant production has converted this basin to a net source of atmospheric CH4. The total CH4 emission from the Xilin River basin was 7.29 Gg CH4 y?1. The current grazing intensity is about eightfold higher than that which would result in a net zero CH4 flux. Since grazing intensity has increased throughout western China, it is likely that ruminant production has converted China's grazed temperate grasslands to a net source of atmospheric CH4 overall.  相似文献   

5.
The wetlands play an important role in global carbon and nitrogen storage, and they are also natural sources of greenhouse gases such as methane (CH4) and nitrous oxide (N2O). Land-use change is an important factor affecting the exchange of greenhouse gases between wetlands and the atmosphere. However, few studies have investigated the effect of land-use change on CH4 and N2O emissions from freshwater marsh in China. Therefore, a field study was carried out over a year to investigate the seasonal changes of the emissions of CH4 and N2O at three sites (Deyeuxia angustifolia marsh, dryland and rice field) in the Sanjiang Plain of Northeast China. Marsh was the source of CH4 showing a distinct temporal variation. Maximum fluxes occurred in June and the highest value was 20.69 ± 2.57 mg CH4 m?2 h?1. The seasonal change of N2O fluxes from marsh was not obvious, consisted of a series of emission pulses. The marsh acted as a N2O sink during winter, while became a N2O source in the growing season. The results showed that gas exchange between soil/snow and the atmosphere in the winter season contributed greatly to the annual budgets. The winter season CH4 flux was about 3.24% of the annual flux and the winter uptake of N2O accounted for 13.70% of the growing-season emission. Conversion marsh to dryland resulted in a shift from a strong CH4 source to a weak sink (from 199.12 ± 39.04 to ?1.37 ± 0.68 kg CH4 ha?1 yr?1), while increased N2O emissions somewhat (from 4.07 ± 1.72 to 4.90 ± 1.52 kg N2O ha?1 yr?1). Conversion marsh to rice field significantly decreased CH4 emission from 199.12 ± 39.04 to 94.82 ± 9.86 kg CH4 ha?1 yr?1 and N2O emission from 4.07 ± 1.72 to 2.09 ± 0.79 kg N2O ha?1 yr?1.  相似文献   

6.
Gaseous methane (CH4) emissions from a swine waste holding lagoon were determined periodically during the year. Micrometeorological techniques were used in order that emission rates from the lagoon were measured under ambient conditions with little disturbance to the natural environment. During the cold winter measurement period, CH4 fluxes were linearly related to lagoon water temperature below 22°C (r=0.87). During warmer measurement periods, both water and air temperatures and windspeed affected emissions rates. In general, flux rates followed a diurnal pattern with greater fluxes during the day when both temperature and windspeed were greatest. Mathematical models using air and water temperature and windspeed factors could explain 47 to 75% of the variation in fluxes. Daily emission rates ranged from 1 to 500 kg CH4 ha−1 d−1. The average flux for the year was 52.3 kg CH4 ha−1 d−1 which corresponded to about 5.6 kg CH4 animal−1 yr−1 from the primary lagoon.  相似文献   

7.
Satellite cartography of atmospheric methane concentrations during 2003–2004 is applied to a systematic top-down methodology to quantify large scale sources and sinks of this important greenhouse gas. Patterns of methane anomalies over South America below latitude 22 S and an assessment of the emissions from the Buenos Aires Province of Argentina are reported. The latter contains the main cattle livestock of the country together with a variety of surface conditions, both natural and man-modified, influencing methane emissions. It was found that anomalies in methane concentrations may be correlated to emission rates by a simple box accumulation-sweeping model validated by recurrent weather conditions. The model shows that the methane emission rates of the Buenos Aires Province are positively correlated with the cattle livestock corresponding to values of (190 ± 40) g d?1 per cattle head.  相似文献   

8.
Based on multi-year measurements of CH4 exchange in sub-daily resolution we show that clear-cutting of a forest in Southern Germany increased soil temperature and moisture and decreased CH4 uptake. CH4 uptake in the first year after clear-cutting (−4.5 ± 0.2 μg C m−2 h−1) was three times lower than during the pre-harvest period (−14.2 ± 1.3 μg C m−2 h−1). In contrast, selective cutting did not significantly reduce CH4 uptake. Annual mean uptake rates were −1.18 kg C ha−1 yr−1 (spruce control), −1.16 kg C ha−1 yr−1 (selective cut site) and −0.44 kg C ha−1 yr−1 (clear-cut site), respectively. Substantial seasonal and inter-annual variations in CH4 fluxes were observed as a result of significant variability of weather conditions, demonstrating the need for long-term measurements. Our findings imply that a stepwise selective cutting instead of clear-cutting may contribute to mitigating global warming by maintaining a high CH4 uptake capacity of the soil.  相似文献   

9.
Ammonia, nitrous oxide, and methane emission from animal farming of South, Southeast, and East Asia, in 2000, was estimated at about 4.7 Tg NH3–N, 0.51 Tg N2O–N, and 29.9 Tg CH4, respectively, using the FAO database and countries’ statistic databases as activity data, and emission factors taking account of regional characteristics. Most of these atmospheric components, up to 60–80%, were produced in China and India. Pakistan, Bangladesh, and Indonesia, which were large source countries next to China and India, contributed more than a few percent of total emission of each atmospheric component. The largest emission livestock were cattle whose contribution was considerably high in South, Southeast, and East Asia; more than one-fourth of ammonia and nitrous oxide emissions: more than half of methane emission. The other major livestock for nitrous oxide and ammonia emissions were pigs. For methane emission, buffaloes were second source livestock. To provide spatial distributions of these gases, the emissions of county and district level were allocated into each 0.5° grid by means of the weighting by high-resolution land cover datasets. The regions with considerable high emissions of all components were able to be found at the Ganges delta and the Yellow River basin. The spatial distributions for ammonia and nitrous oxide emissions were similar but had a substantial difference from methane distribution.  相似文献   

10.
Methane emissions from a flock of 14, 1-year old sheep grazing on a grass and legume pasture were measured using a micrometeorological mass-balance method and a sulphur hexaflouride (SF6) tracer technique. The former measured the mean emission, over 45 min intervals, from all the sheep within a fenced 24 m×24 m enclosure, from the enrichment of methane (CH4) in air as it passed over the sheep. The tracer technique measured emissions from a subset of 7 individual animals over 24 h periods from measurements of CH4 and SF6 concentrations in air exhaled by the sheep, and from the known rate of release of SF6 from small permeation tubes placed in the animals’ rumens. Both methods gave highly similar results for 4 out of 5 days. When the species composition of dietary intake was steady during the last two days of measurement, the mean emission rate from the mass-balance method was 11.9±1.5 (SEM) g CH4 sheep-1 d-1, while the rate from the tracer technique was 11.7±0.4 (SEM) g CH4 sheep-1 d-1. These rates are for sheep with mean live mass of 27 kg, with a measured dry matter intake of 508 g sheep-1 d-1 and pasture dry matter digestibility of 69.5%. There was close agreement between these measurements and estimates from algorithms used to predict methane emissions from sheep for the Australian National Greenhouse Gas Inventory.  相似文献   

11.
There is increasing concern that agricultural intensification in China has greatly increased N2O emissions due to rapidly increased fertilizer use. By linking a spatial database of precipitation, synthetic fertilizer N input, cropping rotation and area via GIS, a precipitation-rectified emission factor of N2O for upland croplands and water regime-specific emission factors for irrigated rice paddies were adopted to estimate annual synthetic fertilizer N-induced direct N2O emissions (FIE-N2O) from Chinese croplands during 1980-2000. Annual FIE-N2O was estimated to be 115.7 Gg N2O-N year−1 in the 1980s and 210.5 Gg N2O-N year−1 in the 1990s, with an annual increasing rate of 9.14 Gg N2O-N year−1 over the period 1980-2000. Upland croplands contributed most to the national total of FIE-N2O, accounting for 79% in 1980 and 92% in 2000. Approximately 65% of the FIE-N2O emitted in eastern and southern central China.  相似文献   

12.
Successions of lake ecosystems from clear-water, macrophyte-rich conditions into turbid states with abundant phytoplankton have taken place in many shallow lakes in China. However, little is know about the change of carbon fluxes in lakes during such processes. We conducted a case study in Lake Biandantang to investigate the change of carbon fluxes during such a regime shift. Dissolved aquatic carbon and gaseous carbon (methane (CH4) and carbon dioxide (CO2)) across air–water interface in three sites with different vegetation covers and compositions were studied and compared. CH4 emissions from three sites were 0.62±0.36, 0.70±0.36, and 1.31±0.57 mg m−2 h−1, respectively. Correlation analysis showed that macrophytes, rather than phytoplankton, directly positively affected CH4 emission. CO2 fluxes of three sites in Lake Biandantang were significantly different, and the average values were 77.8±20.4, 52.2±14.1 and 3.6±26.8 mg m−2 h−1, respectively. There were an evident trend that the larger macrophyte biomass, the lower CO2 emissions. Correlation analysis showed that in different sites, dominant plant controlled CO2 flux across air–water interface. In a year cycle, the percents of gaseous carbon release from lake accounting for net primary production were significantly different (from 39.3% to 2.8%), indicating that with the decline of macrophytes and regime shift, the lake will be a larger carbon source to the atmosphere.  相似文献   

13.
Up to now, carbon gas fluxes from urban lakes in the boreal zone have seldom been studied. In summer 2005 we investigated fluxes from an urban boreal lake basin in southern Finland with long history of eutrophication and anoxia. Hypolimnetic CO2 and CH4 concentrations were high compared to other boreal lakes. During the open-water period, the lake basin acted as a source of CO2 and CH4 with fluxes of 2.10 mol m−2 and 0.04 mol m−2, respectively. Despite the high oxidation rate (83%), CH4 flux was higher than in other lakes and CH4 contributed 60% to Global Warming Potential. The ratio of carbon emission to accumulation was 4, i.e. emissions were an important route for carbon departure but less so than in rural lakes. Since the lake oxygen conditions affected nutrient availability, there was a positive feedback from hypolimnion to carbon uptake, which was reflected in gas concentrations.  相似文献   

14.
In coastal Antarctica, freezing and thawing influence many physical, chemical and biological processes for ice-free tundra ecosystems, including the production of greenhouse gases (GHGs). In this study, penguin guanos and ornithogenic soil cores were collected from four penguin colonies and one seal colony in coastal Antarctica, and experimentally subjected to three freezing–thawing cycles (FTCs) under ambient air and under N2. We investigated the effects of FTCs on the emissions of three GHGs including nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4). The GHG emission rates were extremely low in frozen penguin guanos or ornithogenic soils. However, there was a fast increase in the emission rates of three GHGs following thawing. During FTCs, cumulative N2O emissions from ornithogenic soils were greatly higher than those from penguin guanos under ambient air or under N2. The highest N2O cumulative emission of 138.24 μg N2O–N kg?1 was observed from seal colony soils. Cumulative CO2 and CH4 emissions from penguin guanos were one to three orders of magnitude higher than those from ornithogenic soils. The highest cumulative CO2 (433.0 mgCO2–C kg?1) and CH4 (2.9 mgCH4–C kg?1) emissions occurred in emperor penguin guanos. Penguin guano was a stronger emitter for CH4 and CO2 while ornithogenic soil was a stronger emitter for N2O during FTCs. CO2 and CH4 fluxes had a correlation with total organic carbon (TOC) and soil/guano moisture (Mc) in penguin guanos and ornithogenic soils. The specific CO2–C production rate (CO2–C/TOC) indicated that the bioavailability of TOC was markedly larger in penguin guanos than in ornithogenic soils during FTCs. This study showed that FTC-released organic C and N from sea animal excreta may play a significant role in FTC-related GHG emissions, which may account for a large proportion of annual fluxes from tundra ecosystems in coastal Antarctica.  相似文献   

15.
We have recently completed a methane emissions inventory for the New England region. Methane emissions were calculated to be 0.91 Tg yr-1, with wetlands and landfills dominating all other sources. Wetlands are estimated to produce 0.33 Tg CH4 yr-1, of which 74% come from Maine. Active landfills emit an estimated 0.28 Tg CH4 yr-1, 60% of which are generated from twelve landfills. Although uncertainty in the estimate is greater, emissions from closed landfills are on the same order of magnitude as active landfills and wetlands; 0.25 Tg CH4 yr-1. Sources of moderate magnitude include ruminant animals (0.05 Tg CH4 yr-1) and residential wood combustion (0.03 Tg CH4 yr-1). Motor vehicles, natural gas, and wastewater treatment make only minor contributions. New England is heavily forested and the soil uptake of atmospheric methane in upland forests, 0.06 Tg CH4 yr-1, decreases emissions from soils by about 18%. Although uncertainties remain, our estimates indicate that even in a highly urbanized region such as New England, natural sources of methane make the single greatest contribution to total emissions, with state totals varying between 8% (Massachusetts) and 92% (Maine). Because emissions from only a few large landfills dominate anthropogenic sources, mitigation strategies focused on these discrete point sources should result in significant improvements in regional air quality. Current federal regulations mandate landfill gas collection at only the largest sites. Expanding recovery efforts to moderately sized landfills through either voluntary compliance or further regulations offers the best opportunity to substantially reduce atmospheric methane in New England. In the short term, however, the large contribution from closed, poorly regulated landfills may make the attribution of air quality improvements difficult. Mitigation efforts toward these landfills should also be a priority.  相似文献   

16.
Das S  Ghosh A  Adhya TK 《Chemosphere》2011,84(1):54-62
Combination of divergent active principles to achieve broad-spectrum control is gaining popularity to manage the weed menace in intensive agriculture. However, such application could have non-target impacts on the soil processes affecting soil ecology and environmental interactions. A field experiment was conducted to investigate the impact of separate and combined applications of herbicides bensulfuron methyl and pretilachlor on the emission of N2O and CH4, and related soil and microbial parameters in a flooded alluvial field planted to rice cv Lalat. Single application of the herbicide bensulfuron methyl or pretilachlor resulted in a significant reduction of N2O and CH4 emissions while the combination of these two herbicides distinctly increased N2O and CH4 emissions. Cumulative N2O emissions (kg N2O-N) followed the order of bensulfuron methyl (0.35 kg ha−1) < pretilachlor (0.36 kg ha−1) < control (0.45 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% single dose (0.49 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% double dose (0.54 kg ha−1). Cumulative CH4 emissions (kg CH4), on the other hand, followed the order of bensulfuron methyl (47.89 kg ha−1) < pretilachlor (73.17 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% single dose (93.50 kg ha−1) < control (106.54 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% double dose (124.67 kg ha−1). The inhibitory effect of separate application of herbicides bensulfuron methyl 0.6% and pretilachlor 6.0% on N2O emission was linked to lower mineral N, lower denitrifying and nitrifying activity and low denitrifier and nitrifier populations. Inhibitory effect on CH4 emission, on the contrary, was linked to prevention in the drop of redox potential, lower readily mineralizable carbon (RMC) and microbial biomass carbon (MBC) contents as well as lower methanogenic and higher methanotrophic bacterial population. Admittedly, stimulatory effect of combined application of herbicides bensulfuron methyl 0.6% and pretilachlor 6.0% at double dose on N2O and CH4 emission was related to reversal of the identified indicators of inhibition. Results indicate that while individual application of herbicides bensulfuron methyl 0.6% or pretilachlor 6.0% can reduce N2O and CH4 emission from flooded soil planted to rice, their combined application at normal dose can keep the emission at a comparatively lower level with significantly higher grain yield as compared to the herbicides applied alone.  相似文献   

17.
To investigate the impacts of major factors on carbon loss via gaseous emissions, carbon dioxide (CO2) and methane (CH4) emissions from the ground of open dairy lots were tested by a scale model experiment at various air temperatures (15, 25, and 35 °C), surface velocities (0.4, 0.7, 1.0, and 1.2 m sec?1), and floor types (unpaved soil floor and brick-paved floor) in controlled laboratory conditions using the wind tunnel method. Generally, CO2 and CH4 emissions were significantly enhanced with the increase of air temperature and velocity (P < 0.05). Floor type had different effects on the CO2 and CH4 emissions, which were also affected by air temperature and soil characteristics of the floor. Although different patterns were observed on CH4 emission from the soil and brick floors at different air temperature-velocity combinations, statistical analysis showed no significant difference in CH4 emissions from different floors (P > 0.05). For CO2, similar emissions were found from the soil and brick floors at 15 and 25 °C, whereas higher rates were detected from the brick floor at 35 °C (P < 0.05). Results showed that CH4 emission from the scale model was exponentially related to CO2 flux, which might be helpful in CH4 emission estimation from manure management.

Implications: Gaseous emissions from the open lots are largely dependent on outdoor climate, floor systems, and management practices, which are quite different from those indoors. This study assessed the effects of floor types and air velocities on CO2 and CH4 emissions from the open dairy lots at various temperatures by a wind tunnel. It provided some valuable information for decision-making and further studies on gaseous emissions from open lots.  相似文献   

18.
A series of source tests were conducted to characterize emissions of particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and total hydrocarbon (THC ) from five types of portable combustion devices. Tested combustion devices included a kerosene lamp, an oil lamp, a kerosene space heater, a portable gas range, and four unscented candles. All tests were conducted either in a well-mixed chamber or a well-mixed room, which enables us to determine emission rates and emission factors using a single-compartment mass balance model. Particle mass concentrations and number concentrations were measured using a nephelometric particle monitor and an eight-channel optical particle counter, respectively. Real-time CO concentrations were measured with an electrochemical sensor CO monitor. CO2, CH4, and THC were measured using a GC-FID technique. The results indicate that all particles emitted during steady burning in each of the tested devices were smaller than 1.0 μm in diameter with the vast majority in the range between 0.1 and 0.3 μm. The PM mass emission rates and emission factors for the tested devices ranged from 5.6±0.1 to 142.3±40.8 mg h−1 and from 0.35±0.06 to 9.04±4.0 mg g−1, respectively. The CO emission rates and emission factors ranged from 4.7±3.0 to 226.7±100 mg h−1 and from 0.25±0.12 to 1.56±0.7 mg g−1, respectively. The CO2 emission rates and emission factors ranged from 5500±700 to 210,000±90,000 mg h−1 and from 387±45 to 1689±640 mg g−1, respectively. The contributions of CH4 and THC to emission inventories are expected to be insignificant due both to the small emission factors and to the relatively small quantity of fuel consumed by these portable devices. An exposure scenario analysis indicates that every-day use of the kerosene lamp in a village house can generate fine PM exposures easily exceeding the US promulgated NAAQS for PM2.5.  相似文献   

19.
Methane emissions from the peat bogs in Connemara, Ireland have been inferred from the trace gas observations at the Mace Head Atmospheric Research Station using the nocturnal box method. A total of 237 local events, during April to September, over a 12-year period have been studied. Simultaneous emissions of methane, carbon dioxide and chloroform are routinely observed under nocturnal inversions with low wind speeds from the peat bogs proximal to Mace Head. Night-time deposition of ozone and hydrogen occurs concurrently with these emissions. Using the temporally correlated methane and ozone data we estimate methane emissions from each event. Simultaneous methane and chloroform emissions, together with ozone and hydrogen deposition have been characterised, leading to the estimation of methane emission rates for each event. The mean methane emission flux was found to be 400 ± 90 ng m?2 s?1. A strong seasonal cycle was found in the methane emission fluxes but there was little evidence of a long-term trend in the emissions from the peat bogs in the vicinity of the Mace Head station.  相似文献   

20.
To understand the effect of water level on CH4 emissions from an invasive Spartina alterniflora coastal brackish marsh, we measured CH4 emissions from intermittently and permanently (5 cm water depth) inundated mesocosms with or without N fertilizer added at a rate of 2.7 g N m?2. Dissolved CH4 concentrations in porewater and vertically-profiled sediment redox potential were measured, as were aboveground biomass and stem density of S. alterniflora. Mean CH4 fluxes during the growing season in permanently inundated mesocosms without and with N fertilizer were 1.03 and 1.73 mg CH4 m?2 h?1, respectively, which were significantly higher than in the intermittently inundated mesocosms. This response indicates that prolonged submergence of sediment, up to a water depth of 5 cm, stimulated CH4 release. Inundation did not greatly affect aboveground biomass and stem density, but did significantly reduce redox potential in sediment, which in turn stimulated CH4 production and increased the CH4 concentration of porewater, resulting in higher CH4 emission in the mesocosm. Our data showed that the stimulatory effect of shallow, permanent inundation on CH4 emission in S. alterniflora marsh sediment was due primarily to an improved methanogenic environment rather than an increase in plant-derived substrates and/or the number of gas emission pathways through the plant’s aerenchymal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号