首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric concentrations of major reactive nitrogen (Nr) species were quantified using passive samplers, denuders, and particulate samplers at Dongbeiwang and Quzhou, North China Plain (NCP) in a two-year study. Average concentrations of NH3, NO2, HNO3, pNH4+ and pNO3 were 12.0, 12.9, 0.6, 10.3, and 4.7 μg N m−3 across the two sites, showing different seasonal patterns of these Nr species. For example, the highest NH3 concentration occurred in summer while NO2 concentrations were greater in winter, both of which reflected impacts of N fertilization (summer) and coal-fueled home heating (winter). Based on measured Nr concentrations and their deposition velocities taken from the literature, annual N dry deposition was up to 55 kg N ha−1. Such high concentrations and deposition rates of Nr species in the NCP indicate very serious air pollution from anthropogenic sources and significant atmospheric N input to crops.  相似文献   

2.
The available reactive nitrogen measurements from the global free troposphere obtained during the period of 1985–1995 have been compiled and analyzed. The species of interest are NO, NOx (NO+NO2), NOy, PAN, HNO3 and O3. Data extending to 13 km have been gridded with a 5°×5° horizontal and 1 km vertical resolution. The data have been divided into two seasons, namely “Winter” and “Summer” depending upon the time and location of the observations. Data described here as well as additional analysis have also been archived and are accessible on-line through the World Wide Web at: http://george.arc.nasa.gov/∼athakur. Global maps of the reactive nitrogen species distribution are produced in a form that would be most useful for the test and evaluation of models of tropospheric transport and chemistry. Limited comparisons of the observed reactive nitrogen species data with predictions by 3-D global models were performed using three selected models. Significant model to model as well as data to model differences were frequently observed. During summer, models tended to underpredict NO (−25 to −60%) while significantly overpredicting HNO3 (+250 to +400%) especially in the upper troposphere. Similarly, the seasonal HNO3 variations predicted by some models were opposite to those observed. PAN was generally overpredicted, especially in the upper troposphere, while NOy was underpredicted. Ozone on average was better simulated but significant deviations at specific locations were evident. By comparing model predictions with observations, an overall quantitative assessment of the accuracy with which these three models describe the global distribution of measured reactive nitrogen species is provided. No reliable trend information for any of the reactive nitrogen species was possible based on the presently available data set. The reactive nitrogen data currently offer only a limited spatial and temporal coverage for the validation of global models.  相似文献   

3.
Recent research has demonstrated that nitrogen oxides are transformed to nitrogen acids in indoor environments, and that significant concentrations of nitrous acid are present in indoor air. The purpose of the study reported in this paper has been to investigate the sources, chemical transformations and lifetimes of nitrogen oxides and nitrogen acids under the conditions existing in buildings. An unoccupied single family residence was instrumented for monitoring of NO, NO2, NOy, MONO, HNO3, CO, temperature, relative humidity, and air exchange rate. For some experiments, NO2 and HONO were injected into the house to determine their removal rates and lifetimes. Other experiments investigated the emissions and transformations of nitrogen species from unvented natural gas appliances. We determined that HONO is formed by both direct emissions from combustion processes and reaction of NO2 with surfaces present indoors. Equilibrium considerations influence the relative contributions of these two sources to the indoor burden of HONO. We determined that the lifetimes of trace nitrogen species varied in the order NO ~ HONO > NO2 >HNO3. The lifetimes with respect to reactive processes are on the order of hours for NO and HONO, about an hour for NO2, and 30 minutes or less for HNO3. The rapid removal of NO2 and long lifetime of HONO suggest that HONO may represent a significant fraction of the oxidized nitrogen burden in indoor air.  相似文献   

4.
The influence of nitric acid (HNO3) on the atmospheric corrosion of copper, zinc and carbon steel was investigated in laboratory exposures at 65% relative humidity (RH), 25 °C and 0.03 cm s−1 air velocity. The deposition velocity (Vd) of HNO3 on the specimens, the corrosion rates and corrosion products were determined by gravimetry, ion chromatography, X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) microspectroscopy. Comparisons were also made with literature data on the corrosion effects of sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3).At 65% RH, the Vd of HNO3 on all metals was at least 70% of that of an ideal absorbent, i.e., an impregnated filter with perfect absorption for HNO3. The Vd of HNO3 was much higher than that of SO2, NO2 or O3, which is mainly attributed to the relatively high sticking coefficient, high solubility and high reactivity of HNO3 compared to the other gases. During identical exposures to HNO3, the corrosion rate of carbon steel was nearly three times higher than that of copper or zinc. However, when comparing the corrosion effects induced by HNO3 with those induced by SO2 alone or in combination with either NO2 or O3, HNO3 turned out to be far more aggressive than SO2. Relative to SO2, zinc is the metal most sensitive to HNO3, followed by copper and with carbon steel least sensitive to HNO3.  相似文献   

5.
In situ measurements of nitric acid (HNO3), reactive nitrogen (NOy), nitric oxide (NO), and ozone (O3) made in the upper troposphere (UT) and lower stratosphere (LS) between 29° and 33°N latitudes during September 1999 are used to examine NOy partitioning and correlations between the measured species in these regions. The fast-response (1 s) HNO3 measurements are acquired with a new autonomous CIMS instrument. In the LS, HNO3 accounts for the majority of NOy, and the sum of HNO3 and NOx accounts for approximately 90% of NOy. In the UT, the sum of HNO3 and NOx varies between 40% and 100% of NOy. Both HNO3 and NOy are strongly positively correlated with O3, with larger correlation slopes in the UT than in the LS. In the UT at low values of the quantity (NOy–NOx–HNO3), it is uncorrelated with O3, while at higher values, a positive correlation with O3 is found. Of these two air mass types, those with higher (NOy–NOx–HNO3) mixing ratios are likely associated with the presence of peroxyacetyl nitrate (PAN) that is produced by NOx-hydrocarbon chemistry.  相似文献   

6.
Abstract

The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. A series of experiments were carried out to investigate atmospheric nitrogen (N) input into the lake. N was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. Episodic atmospheric measurements during January and March 2001 have shown that the dry N flux onto the lake ranged from 0.9 to 17.4 kg N/ha-yr, and on average is caused by nitric acid (HNO3; 31%), followed by nitrogen dioxide (NO2; 23%), fine ammonium (NH4 +; 20%), coarse nitrate (NO3 ?; 16%), fine NO3 + (5%), and coarse NH4 + (5%). Similar measurements in Greenville, SC (the upper watershed of the Reedy River), showed that the dry N deposition flux there ranged from 1.4 to 9.7 kg N/ha-yr and was mostly caused by gaseous deposition (40% NO2 and 40% HNO3). The magnitude of this dry N deposition flux is comparable to wet N flux as well as other point sources in the area. Thermodynamic modeling showed low concentrations of ammonia, relative to the particulate NH4 + concentrations.  相似文献   

7.
A mesoscale model of pollutant transport, transformation and deposition was used to perform a detailed analysis of acidic deposition to the states of New York and Ohio during a 3-day springtime deposition episode. This model can be used to assess the roles of wet and dry deposition to individual land types in the removal of pollutants from the atmosphere. Over two-thirds (67 %, Ohio; 78 %, New York) of the acidic deposition during this rainy period fell as wet deposition, primarily in the form of H2SO4. Dry deposition of SO2 accounted for 70–75 % of the total dry acidic deposition in both areas, and most of the remaining dry deposition occurred as HNO3. Over both deposition areas, particulate sulfate deposition accounted for <1 % of the total acid deposition. Due to the highly surface-specific nature of the dry deposition process, individual land types displayed unique patterns of pollutant uptake. Water surfaces absorbed primarily SO2, while rougher forested areas absorbed a larger proportion of HNO3 vapor. Urban areas, with their associated material surfaces, were found to absorb significantly less acid in the dry form, and during dry periods most of this deposition may occur as HNO3 vapor, although considerable uncertainty exists regarding the treatment of rainfall-wetted surfaces. These model results suggest that dry pollutant fluxes to individual surface types will show significant variability from any ‘averaged’ flux estimates over larger areas encompassing numerous land types.  相似文献   

8.
A statistical Lagrangian atmospheric transport model was used to generate annual maps of deposition of sulphur and oxidised and reduced nitrogen for the UK at a 5×5 km2 resolution. The model was run using emissions for the year 2002. The model was compared with measurements of gas concentrations (SO2, NOx, HNO3 and NH3) and of wet deposition and aerosol concentrations of SO42−, NO3 and NH4+ from national monitoring networks. Good correlation was obtained, demonstrating that the model is capable of accurately estimating the mass balance and spatial distribution of sulphur and nitrogen compounds in the atmosphere. A future emissions scenario for the year 2020 was used to test the influence of shipping emissions on sulphur deposition in the UK. The results show that, if shipping emissions are assumed to increase at a rate of 2.5% per year, their relative contribution to sulphur deposition is expected to increase from 9% to 28% between 2002 and 2020. The model was compared to both a European scale and a global scale chemical transport model and found to give broad agreement with the magnitude and location of sulphur deposition associated with shipping emissions. Enforcement of the MARPOL convention to reduce the sulphur content in marine fuel to 1% was estimated to result in a 6% reduction in total sulphur deposition to the UK for the year 2020. The percentage area of sensitive habitats with exceedance of critical loads for acidity in the UK was predicted to decrease by 1% with the implementation of the MARPOL convention.  相似文献   

9.
Determining the destructions of both ozone and odd oxygen, Ox, in the nocturnal boundary layer (NBL) is important to evaluate the regional ozone budget and overnight ozone accumulation. This work develops a simple method to determine the dry deposition velocity of ozone and its destruction at a polluted nocturnal boundary layer. The destruction of Ox can also be determined simultaneously. The method is based on O3 and NO2 profiles and their surface measurements. Linkages between the dry deposition velocities of O3 and NO2 and between the dry deposition loss of Ox and its chemical loss are constructed and used. Field measurements are made at an agricultural site to demonstrate the application of the model. The model estimated nocturnal O3 dry deposition velocities from 0.13 to 0.19 cm s?1, very close to those previously obtained for similar land types. Additionally, dry deposition and chemical reactions account for 60 and 40% of the overall nocturnal ozone loss, respectively; ozone dry deposition accounts for 50% of the overall nocturnal loss of Ox, dry deposition of NO2 accounts for another 20%, and chemical reactions account for the remaining 30%. The proposed method enables the use of measurements made in typical ozone field studies to evaluate various nocturnal destructions of O3 and Ox in a polluted environment.  相似文献   

10.
This paper reports the results of over 2 years of measurements of several of the species comprising atmospheric SOx (=SO2+SO42−) and NOy (=NO+NO2 + PAN + HNO3+NO3+ organicnitrates + HONO + 2N2O5 …) at Whiteface Mountain, New York. Continuous real-time measurements of SO2 and total gaseous NOy provided data for about 50% and 65% of the period, respectively, and 122 filter pack samples were obtained for HNO3, SO2 and aerosol SO42−, NO3, H+ and NH4+. Concentrations of SO2 and NOy were greatest in winter, whereas concentrations of the reaction products SO42− and HNO3were greatest in summer. The seasonal variation in SO42− was considerably more pronounced than that of HNO3and the high concentrations of SO42− aerosol present in summer were also relatively more acidic than SO42− aerosol in other seasons. As a result, SO42− aerosol was the predominant acidic species present in summer, HNO3was predominant in other seasons. Aerosol NO3 concentrations were low in all seasons and appeared unrelated to simultaneous NOy and HNO3concentrations. These data are consistent with seasonal variations in photochemical oxidation rates and with existing data on seasonal variations in precipitation composition. The results of this study suggest that emission reductions targeted at the summer season might be a cost-effective way to reduce deposition of S species, but would not be similarly cost-effective in reducing deposition of N species. kwAcid deposition, seasonal variation, sulfate, nitrate, nitric acid, sulfur dioxide, oxides of nitrogen, hydrogen peroxide, ozone, air pollution, Adirondack Mountains  相似文献   

11.
Concentrations of CO, SO2, NO, NO2, and NOY were measured atop the University of Houston's Moody Tower supersite during the 2006 TexAQS-II Radical and Aerosol Measurement Project (TRAMP). The lowest concentrations of all primary and secondary species were observed in clean marine air in southerly flow. SO2 concentrations were usually low, but increased dramatically in sporadic midday plumes advected from sources in the Houston Ship Channel (HSC), located NE of the site. Concentrations of CO and NOx displayed large diurnal variations in keeping with their co-emission by mobile sources in the Houston Metropolitan Area (HMA). CO/NOx emission ratios of 5.81 ± 0.94 were observed in the morning rush hour. Nighttime concentrations of NOx (NOx = NO + NO2) and NOY (NOY = NO + NO2 + NO3 + HNO3 + HONO + 21N2O5 + HO2NO2 + PANs + RONO2 + p-NO3? + …) were highest in winds from the NNW-NE due to emission from mobile sources. Median ratios of NOx/NOY were approximately 0.9 overnight, reflecting the persistence and/or generation of NOZ (NOZ = NOY ? NOx) species in the nighttime Houston boundary layer, and approached unity in the morning rush hour. Daytime concentrations of NOx and NOY were highest in winds from the HSC. NOx/NOY ratios reached their minimum values (median ca 0.63) from 1300 to 1500 CST, near local solar noon, and air masses often retained enough NOx to sustain additional O3 formation farther downwind. HNO3 and PANs comprised the dominant NOZ species in the HMA, and on a median basis represented 17–20% and 12–15% of NOY, respectively, at midday. Concentrations of HNO3, PANs, and NOZ, and fractional contributions of these species to NOY, were at a maximum in NE flow, reflecting the source strength and reactivity of precursor emissions in the HSC. As a result, daytime O3 concentrations were highest in air masses with HSC influence. Overall, our findings confirm the impact of the HSC as a dominant source region within the HMA. A comparison of total NOY measurements with the sum of measured NOY species (NOYi = NOx + HNO3 + PANs + HONO + p-NO3?) yielded excellent overall agreement during both day ([NOY](ppb) = ([NOYi](ppb)11.03 ± 0.16) ? 0.42; r2 = 0.9933) and night ([NOY](ppb) = ([NOYi](ppb)11.01 ± 0.16) + 0.18; r2 = 0.9975). A similar comparison between NOY–NOx concentrations and the sum of NOZi (NOZi = HNO3 + PANs + HONO + p-NO3?) yielded good overall agreement during the day ([NOZ](ppb) = ([NOZi](ppb)11.01 ± 0.30) + 0.044 ppb; r2 = 0.8527) and at night ([NOZ](ppb) = ([NOZi](ppb)11.12 ± 0.69) + 0.16 ppb; r2 = 0.6899). Median ratios of NOZ/NOZi were near unity during daylight hours but increased to approximately 1.2 overnight, a difference of 0.15–0.50 ppb. Differences between NOZ and NOZi rarely exceeded combined measurement uncertainties, and variations in NOZ/NOZi ratios may have resulted solely from errors in conversion efficiencies of NOY species and changes in NOY composition. However, nighttime NOZ/NOZi ratios and the magnitude of NOZ ? NOZi differences were generally consistent with recent observations of ClNO2 in the nocturnal Houston boundary layer.  相似文献   

12.
In the present study, photocatalytic reactions of nitrogen oxides (NOx = NO + NO2) were studied on commercial TiO2 doped facade paints in a flow tube photoreactor under simulated atmospheric conditions. Fast photocatalytic conversion of NO and NO2 was observed only for the photocatalytic paints and not for non-catalytic reference paints. Nitrous acid (HONO) was formed in the dark on all paints studied, however, it efficiently decomposes under irradiation only on the photocatalytic samples. Thus, it is concluded that photocatalytic paint surfaces do not represent a daytime source of HONO, in contrast to other recent studies on pure TiO2 surfaces. As main final product, the formation of adsorbed nitric acid/nitrate anion (HNO3/NO3?) was observed with near to unity yield. In addition, traces of H2O2 were observed in the gas phase only in the presence of O2. Formation of the greenhouse gas nitrous oxide (N2O) could be excluded. The uptake kinetics of NO, NO2 and HONO was very fast under atmospheric conditions (e.g. γ(NO + TiO2) > 10?5). Thus, the uptake on urban surfaces (painted houses, etc.) will be limited by transport. For a hypothetically painted street canyon, an average reduction of nitrogen oxide levels of ca. 5% is estimated. Since the harmful HNO3/NO3? is formed on the surface of the photoactive paints, whereas it is formed in the gas phase in the atmosphere, the use of photocatalytic paints may also help to reduce acid deposition, e.g. on plants, or nitric acid related health issues.  相似文献   

13.
We reconstructed the historical trends in atmospheric deposition of nitrogen to Cape Cod, Massachusetts, from 1910 to 1995 by compiling data from literature sources, and adjusting the data for geographical and methodological differences. The reconstructed data suggest that NO3-N wet deposition to this region increased from a low of 0.9 kg N ha−1 yr−1 in 1925 to a high of approximately 4 kg N ha−1 yr−1 around 1980. The trend in NO3-N deposition has remained since the early 1980s at around 3.6 kg N ha−1 yr−1. In contrast, NH4-N wet deposition decreased from more than 4 kg N ha−1 yr−1 in the mid 1920s to about 1.5 kg N ha−1 yr−1 from the late-1940s until today. Emissions of NOx-N in the Cape Cod airshed increased at a rate of 2.1 kg N ha−1 per decade since 1910, a rate that is an order of magnitude higher than NO3-N deposition. Estimates of NH3 emissions to the northeast United States and Canada have decreased slightly throughout the century, but the decrease in reconstructed N-NH4+ deposition rates does not parallel emissions estimates. The trend in reconstructed total nitrogen deposition suggests an overall increase through the century at a rate of 0.26 kg N ha−1 per decade. This overall increase in deposition may expose coastal forests to rates of nitrogen addition that, if exceeded, could induce nitrogen saturation and increase nitrogen loads to adjoining estuaries.  相似文献   

14.
Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO42-), nitrate (NO3?) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO42? concentration, but clearly overestimated PM2.5 NO3? concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3? concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3?.
Implications: The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.  相似文献   

15.
Atmospheric deposition is an important removal process of aerosol particles and gases from the atmosphere. To elucidate the relative contributions of wet and dry processes and in-cloud and below-cloud scavenging based on deposition amounts in winter at Mt. Tateyama, central Japan, we obtained daily samples (December, 2006–March, 2007) of size-segregated aerosol particles and precipitation at Senjyugahara (SJ; 475 m a.s.l.) and vertical samples of spring snow cover at Murododaira (MR, 2450 m a.s.l., 13 km distance from SJ) on the western flank of Mt. Tateyama. The NH4+ and nssSO42? in aerosols were mostly found in the fine fraction (<2 μm), although Na+, NO3?, and nssCa2+ were mainly detected in the coarse fraction (>2 μm). Average ionic concentrations (μg g?1) in precipitation at SJ were higher about 3.8 for Na+ and nssCa2+, 3.4 for NO3?, 3.7 for NH4+, 2.5 for nssSO42? than those at MR, whereas cumulative precipitation amounts at SJ and MR were, respectively, 84 and 175 cm of water equivalent. Wet and dry deposition amounts during the study period were estimated for sites using size-segregated aerosol data, winter averages of HNO3, NH3, and SO2 concentrations, and dry deposition velocities. Particle-dry deposition comprised about 3% (Na+) to 11% (NH4+) of the total deposition at MR. The maximum amounts of gas dry deposition were estimated, respectively, as 4, 13, and 3% of the total deposition at MR for NH4+, NO3?, and nssSO42?. The relative contributions of below-cloud scavenging (BCS) between MR and SJ were estimated as considering the wet only deposition amount at MR. Higher contributions of BCS were obtained for Na+ (56%) and nssCa2+ (45%), whereas BCSs for NH4+, NO3?, and nssSO42? were lower than 28%. Ionic constituents existing predominantly in the coarse fraction showed a large contribution of BCS.  相似文献   

16.
A collocated, dry deposition sampling program was begun in January 1987 by the US Environmental Protection Agency to provide ongoing estimates of the overall precision of dry deposition and supporting data entering the Clean Air Status and Trends Network (CASTNet) archive. Duplicate sets of dry deposition sampling instruments were installed adjacent to existing instruments and have been operated for various periods at 11 collocated field sites. All sampling and operations were performed using standard CASTNet procedures. The current study documents the bias-corrected precision of CASTNet data based on collocated measurements made at paired sampling sites representative of sites across the network. These precision estimates include the variability for all operations from sampling to data storage in the archive. Precision estimates are provided for hourly, instrumental ozone (O3) concentration and meteorological measurements, hourly model estimates of deposition velocity (Vd) from collocated measurements of model inputs, hourly O3 deposition estimates, weekly filter pack determinations of selected atmospheric chemical species, and weekly estimates of Vd and deposition for each monitored filter pack chemical species and O3.Estimates of variability of weekly pollutant concentrations, expressed as coefficients of variation, depend on chemical species: NO3∼8.1%; HNO3∼6.4%; SO2∼4.3%; NH4+∼3.7%; SO42−∼2.3%; and O3∼1.3%. Precision of estimates of weekly Vd from collocated measurements of model inputs also depends on the chemical species: aerosols ∼2.8%; HNO3∼2.6%; SO2∼3.0%; and O3∼2.0%. Corresponding precision of weekly deposition estimates are: NO3∼8.6%; HNO3∼5.2%; SO2∼5.6%; NH4+∼3.9%; SO42−∼3.5%; and O3∼3.3%. Precision of weekly concentration, Vd estimates, and deposition estimates are comparable in magnitude and slightly smaller than the corresponding hourly values. Annual precision estimates, although uncertain due to their small sample size in the current study, are consistent with the corresponding weekly values.  相似文献   

17.
In order to discuss the dry deposition fluxes of atmospheric fixed nitrogen species, observations of aerosol chemistry including nitrate (NO3?) and ammonium (NH4+) were conducted at two islands, Rishiri Island and Sado Island, over the Sea of Japan. Although the atmospheric concentrations of particulate NH4+–N showed higher values than those of particulate NO3?–N at both sites, the dry deposition fluxes of the particulate NO3?–N were estimated to be higher than those of the particulate NH4+–N. This was caused by the difference of particle sizes between the particulate NO3? and NH4+; NH4+ was almost totally contained in fine particles (d < 2.5 μm) with smaller deposition velocity, whereas NO3? was mainly contained in coarse particles (d > 2.5 μm) with greater deposition velocity. Fine mode NO3? was strongly associated with fine mode sea-salt and mineral particles, of which higher concentrations shifted the size of particulate NO3? toward the fine mode range. This size shift would decrease the dry deposition flux of the fixed nitrogen species on coastal waters and accelerate atmospheric transport of them to the remote oceanic areas.  相似文献   

18.
Gas and aerosol measurements were made during the Polar Sunrise Experiment 2000 at Alert, Nunavut (Canada), using two independent denuder/filter systems for sampling and subsequent analysis by ion chromatography. Twelve to forty-eight hour samples were taken during a winter (9–21 February 2000) and a spring (17 April–5 May 2000) campaign. During the spring campaign, samples were taken at two different heights above the snow surface to investigate concentration differences. Total particulate NO3 is the most abundant inorganic nitrogen compound during Arctic springtime (mean 137.4 ng m−3). The NO3 fluxes were calculated above the snow surface to help identify processes that control snow–atmosphere exchange of reactive nitrogen compounds. We suggest that the observed fluxes of coarse particle NO3 via snow deposition may contribute to the nitrogen inventory in the snow surface. Measurements of surface snow provide experimental data that constrain the contribution of dry deposition of coarse particle NO3 to <7%. Wet deposition in falling snow appears to be the major contributor to the nitrate input to the snow.  相似文献   

19.
Methods for estimating the dry deposition velocities of atmospheric gases in the U.S. and surrounding areas have been improved and incorporated into a revised computer code module for use in numerical models of atmospheric transport and deposition of pollutants over regional scales. The key improvement is the computation of bulk surface resistances along three distinct pathways of mass transfer to sites of deposition at the upper portions of vegetative canopies or structures, the lower portions, and the ground (or water surface). This approach replaces the previous technique of providing simple look-up tables of bulk surface resistances. With the surface resistances divided explicitly into distinct pathways, the bulk surface resistances for a large number of gases in addition to those usually addressed in acid deposition models (SO2, O3 NOx, and HNO3) can be computed, if estimates of the effective Henry's Law constants and appropriate measures of the chemical reactivity of the various substances are known. This has been accomplished successfully for H2O2, HCHO3 CH3CHO (to represent other aldehvdes), CH3O2H (to represent organic peroxides), CH3C(O)O2H, HCOOH (to represent organic acids), NH3, CH3C(O)O2NO2 and HNO2. Other factors considered include surface temperature, stomata1 response to environmental parameters, the wetting of surfaces by dew and rain, and the covering of surfaces by snow. Surface emission of gases and variations of uptake characteristics by individual plant species within the landuse types are not considered explicitly.  相似文献   

20.
This paper describes the development of a detailed dry deposition model for routine computation of dry deposition velocities of SO2, O3, HNO3 and fine particle SO42− across much of North America. Four different dry deposition/surface exchange sub-models have been combined with the current Canadian weather forecast model (Global Environmental Multiscale model) with a 3 h time resolution and a horizontal spatial resolution of 35 km. The present model uses the US Geological Survey North American Land Cover Characteristics data to obtain fourteen different land use and five seasonal categories. The four sub-models used are a multi-layer model for gaseous species over taller canopy land-use types, a big-leaf model for gaseous species over lower canopies (including bare soil and water) and for HNO3 under all surface types and, two different models for SO42−, one for tall canopies and the other for short canopies. All necessary parameters for each sub-model, chemical species, land-use and seasonal categories have been selected from available data libraries or from the values reported in the literature. The purpose for developing this model (referred to as the Routine Deposition Model (RDM)), when coupled with air concentration data, is to provide estimates of seasonal dry deposition, which can be combined with wet deposition to produce total deposition estimates. Model theory is discussed in this paper and model sensitivity tests and results will be presented in a companion paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号