首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Numerical sensitivity tests and four months of complete model runs have been conducted for the Routine Deposition Model (RDM). The influence of individual model inputs on dry deposition velocity as a function of land-use category (LUC) and pollutant (SO2, O3, SO2−4 and HNO3) were examined over a realistic range of values for solar radiation, stability and wind speed. Spatial and temporal variations in RDM deposition velocity (Vd) during June – September 1996 time period generated using meteorological input from a mesoscale model run at 35 km resolution over north-eastern North America were also examined. Comparison of RDM Vd values to a variety of measurements of dry deposition velocities of SO2, O3, SO2−4 and NHO3 that have been reported in the literature demonstrated that RDM produces realistic results. Over northeastern NA RDM monthly averaged dry deposition velocities for SO2 vary from 0.2 to 3.0 cm s−1 with the highest deposition velocities over water surfaces. For O3, the monthly averaged dry deposition velocities are from 0.05 to 1.0 cm s−1 with the lowest values over water surfaces and the highest over forested areas. For HNO3, the monthly averaged dry deposition velocities have the range of 0.5 to 6 cm s−1, with the highest values for forested areas. For SO2−4, they range from 0.05–1.5 cm s−1, with the lowest values over water and the highest over forest. The monthly averaged dry deposition velocities for SO2 and O3 are higher in the growing season compared to the fall, but this behaviour is not apparent for HNO3 and sulphate. In the daytime, the hourly averaged dry deposition velocities for SO2, O3, SO2−4 and HNO3 are higher than that in the nighttime over most of the vegetated area. The diurnal variation is most evident for surfaces with large values for leaf area index (LAI), such as forests. Based on the results presented in this paper, it is concluded that RDM Vd values can be combined with measured air concentrations over hourly, daily or weekly periods to determine dry deposition amounts and with wet deposition measurements to provide seasonal estimates of total deposition and estimates of the relative importance of dry deposition.  相似文献   

2.
This paper describes the development of a detailed dry deposition model for routine computation of dry deposition velocities of SO2, O3, HNO3 and fine particle SO42− across much of North America. Four different dry deposition/surface exchange sub-models have been combined with the current Canadian weather forecast model (Global Environmental Multiscale model) with a 3 h time resolution and a horizontal spatial resolution of 35 km. The present model uses the US Geological Survey North American Land Cover Characteristics data to obtain fourteen different land use and five seasonal categories. The four sub-models used are a multi-layer model for gaseous species over taller canopy land-use types, a big-leaf model for gaseous species over lower canopies (including bare soil and water) and for HNO3 under all surface types and, two different models for SO42−, one for tall canopies and the other for short canopies. All necessary parameters for each sub-model, chemical species, land-use and seasonal categories have been selected from available data libraries or from the values reported in the literature. The purpose for developing this model (referred to as the Routine Deposition Model (RDM)), when coupled with air concentration data, is to provide estimates of seasonal dry deposition, which can be combined with wet deposition to produce total deposition estimates. Model theory is discussed in this paper and model sensitivity tests and results will be presented in a companion paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号