首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solvent extraction for heavy crude oil removal from contaminated soils   总被引:1,自引:0,他引:1  
Li X  Du Y  Wu G  Li Z  Li H  Sui H 《Chemosphere》2012,88(2):245-249
A new strategy of heavy crude oil removal from contaminated soils was studied. The hexane-acetone solvent mixture was used to investigate the ability of solvent extraction technique for cleaning up soils under various extraction conditions. The mixtures of hexane and acetone (25 vol%) were demonstrated to be the most effective in removing petroleum hydrocarbons from contaminated soils and approx 90% of saturates, naphthene aromatics, polar aromatics, and 60% of nC7-asphaltenes were removed. Kinetic experiments demonstrated that the equilibrium was reached in 5 min and the majority of the oil pollutants were removed within 0.5 min. The effect of the ratio between solvent and soil on the extraction efficiency was also studied and results showed that the efficiency would increase following the higher solvent soil ratio. Then the multistage continuous extraction was considered to enhance the removal efficiency of oil pollutants. Three stages crosscurrent and countercurrent solvent extraction with the solvent soil ratio 6:1 removed 97% oil contaminants from soil. Clearly the results showed that the mixed-solvent of hexane and acetone (25 vol%) with character of low-toxic, acceptable cost and high efficiency was promising in solvent extraction to remove heavy oil fractions as well as petroleum hydrocarbons from contaminated soils.  相似文献   

2.
Two surface soils contaminated with polychlorinated biphenyls (PCBs) collected from Superfund sites in the New England region of the United States, Fletcher Paints and Merrimack Industrial Metals, were evaluated for field treatment at the bench level using catalyzed H2O2 propagations (CHP—modified Fenton’s reagent). The two soils were first evaluated for the potential for in situ treatment based on two criteria: (1) temperature (<40 °C after CHP reagent addition), and (2) hydrogen peroxide longevity (>24 h). In situ CHP remediation was more applicable to the Fletcher soil, while the Merrimack soil was better suited to ex situ treatment based on temperature increases and hydrogen peroxide lifetimes. Using the highest hydrogen peroxide concentrations appropriate for in situ treatment in each soil, PCB destruction was 94% in the Fletcher soil but only 48% in the Merrimack soil. However, 98% PCB destruction was achieved in the Merrimack soil using conditions more applicable to ex situ treatment (higher hydrogen peroxide concentrations with temperatures >40 °C). Analysis of degradation products by gas chromatography/mass spectroscopy showed no detectable chlorinated degradation products, suggesting that the products of PCB oxidation were rapidly dechlorinated and degraded. The results of this research document that the two PCB-contaminated soils studied can be effectively treated using aggressive CHP conditions, and that such a detailed bench study provides important information before implementing field treatment.  相似文献   

3.
Usman M  Faure P  Ruby C  Hanna K 《Chemosphere》2012,87(3):234-240
In this study, feasibility of magnetite-activated persulfate oxidation (AP) was evaluated for the degradation of polycyclic aromatic hydrocarbons (PAHs) in batch slurry system. Persulfate oxidation activated with soluble Fe(II) (FP) or without activation (SP) was also tested. Kinetic oxidation of PAHs was tracked in spiked sand and in aged PAH contaminated soils at circumneutral pH. Quartz sand was spiked with: (i) single model pollutant (fluorenone) and (ii) organic extract isolated from two PAH contaminated soils (H and NM sampled from ancient coking plants) and was subjected to oxidation. Oxidation was also performed on real H and NM soils with and without an extraction pretreatment. Results indicate that oxidation of fluorenone resulted in its complete degradation by AP while abatement was very low (<20%) by SP or FP. In soil extracts spiked on sand, significant degradation of 16 PAHs was observed by AP (70-80%) in 1 week as compared to only 15% by SP or FP systems. But no PAH abatement was observed in real soils whatever the treatment used (AP, FP or SP). Then soils were subjected to an extraction pretreatment but without isolation of organic extract from soil. Oxidation of this pretreated soil showed significant abatement of PAHs by AP. On the other hand, very low degradation was achieved by FP or SP. Selective degradation of PAHs was observed by AP with lower degradation efficiency towards high molecular weight PAHs. Analyses revealed that no by-products were formed during oxidation. The results of this study demonstrate that magnetite can activate persulfate at circumneutral pH for an effective degradation of PAHs in soils. However, availability of PAHs and soil matrix were found to be the most critical factors for degradation efficiency.  相似文献   

4.
This work reports the analysis of the efficiency and time of soil remediation using vapour extraction as well as provides comparison of results using both, prepared and real soils. The main objectives were: (i) to analyse the efficiency and time of remediation according to the water and natural organic matter content of the soil; and (ii) to assess if a previous study, performed using prepared soils, could help to preview the process viability in real conditions. For sandy soils with negligible clay content, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) the increase of soil water content and mainly of natural organic matter content influenced negatively the remediation process, making it less efficient, more time consuming, and consequently more expensive; and (ii) a previous study using prepared soils of similar characteristics has proven helpful for previewing the process viability in real conditions.  相似文献   

5.
This work reports a relatively rapid procedure for the forecasting of the remediation time (RT) of sandy soils contaminated with cyclohexane using vapour extraction. The RT estimated through the mathematical fitting of experimental results was compared with that of real soils. The main objectives were: (i) to predict the RT of soils with natural organic matter (NOM) and water contents different from those used in experiments; and (ii) to analyse the time and efficiency of remediation, and the distribution of contaminants into the soil matrix after the remediation process, according to the soil contents of: (ii1) NOM; and (ii2) water. For sandy soils with negligible clay contents, artificially contaminated with cyclohexane before vapour extraction, it was concluded that: (i) if the NOM and water contents belonged to the range of the prepared soils, the RT of real soils could be predicted with relative differences not higher than 12%; (ii1) the increase of NOM content from 0% to 7.5% increased the RT (1.8-13 h) and decreased the remediation efficiency (RE) (99-90%) and (ii2) the increase of soil water content from 0% to 6% increased the RT (1.8-4.9 h) and decreased the RE (99-97%). NOM increases the monolayer capacity leading to a higher sorption into the solid phase. Increasing of soil water content reduces the mass transfer coefficient between phases. Concluding, NOM and water contents influence negatively the remediation process, turning it less efficient and more time consuming, and consequently more expensive.  相似文献   

6.
The current models are not simple enough to allow a quick estimation of the remediation time. This work reports the development of an easy and relatively rapid procedure for the forecasting of the remediation time using vapour extraction. Sandy soils contaminated with cyclohexane and prepared with different water contents were studied. The remediation times estimated through the mathematical fitting of experimental results were compared with those of real soils. The main objectives were: (i) to predict, through a simple mathematical fitting, the remediation time of soils with water contents different from those used in the experiments; (ii) to analyse the influence of soil water content on the: (ii(1)) remediation time; (ii(2)) remediation efficiency; and (ii(3)) distribution of contaminants in the different phases present into the soil matrix after the remediation process. For sandy soils with negligible contents of clay and natural organic matter, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) if the soil water content belonged to the range considered in the experiments with the prepared soils, then the remediation time of real soils of similar characteristics could be successfully predicted, with relative differences not higher than 10%, through a simple mathematical fitting of experimental results; (ii) increasing soil water content from 0% to 6% had the following consequences: (ii(1)) increased remediation time (1.8-4.9h, respectively); (ii(2)) decreased remediation efficiency (99-97%, respectively); and (ii(3)) decreased the amount of contaminant adsorbed onto the soil and in the non-aqueous liquid phase, thus increasing the amount of contaminant in the aqueous and gaseous phases.  相似文献   

7.
ABSTRACT

The U.S. Environmental Protection Agency’s (EPA) Superfund Technical Assistance Response Team (START) in cooperation with EPA’s Superfund Innovative Technology Evaluation (SITE) program evaluated a pilot scale solvent extraction process developed by CF-Systems. This process uses liquefied propane to extract organic contaminants from soils, sludges, and sediments. A pilot-scale evaluation was conducted in Golden, CO at Hazen Research, Inc., using CF-Systems’ trailer-mounted organics extraction unit. Approximately 1,000 pounds of soil, with an average poly-chlorinated biphenyl (PCB) concentration of 260 mg/kg, was obtained from a remote Superfund site. Six 100-pound batches of the contaminated soil were extracted using multiple extraction sequences. Three of the six batch runs were subjected to three extraction sequences each, so that process variability could be evaluated. Results showed that PCB removal efficiencies varied between 91.4 and 99.4%, with the propane-extracted soils retaining low concentrations of PCBs (19.0–1.8 mg/kg). Removal efficiencies of oil and grease (O&G) were found to be 96.0 to 99.6% with propane-extracted soils retaining O&G concentrations from 279 to <20 mg/kg. Overall extraction efficiency was found to be dependant upon the numberof extraction cycles used.  相似文献   

8.
Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile.  相似文献   

9.
铅锌厂重金属污染土壤的螯合剂淋洗修复及其应用   总被引:2,自引:0,他引:2  
为探讨螯合剂淋洗法在修复铅锌厂周边重金属污染土壤的修复效果及淋洗后土壤利用价值,研究采用振荡淋洗的方法比较了乙二胺四乙酸(EDTA)、次氮基三乙酸三钠盐(NTA)、-乙二胺-N,N-二琥珀酸三钠盐(EDDS)乙二醇-双-(2-氨基乙醚)四乙酸(EGTA)4种螯合剂对不同污染程度土壤中Cd、Cu、Zn、Pb的去除效果,并用BCR连续提取法分析了淋洗前后土壤重金属形态的变化,最后通过黑麦草盆栽实验及土壤酶分析,探讨了土壤经淋洗后的利用价值。结果表明,4种螯合剂中EDTA对Cd、Cu、Zn和Pb的去除率比其他螯合剂的去除率高,其中对高污染土壤4种重金属离子的去除率最大,分别为Cd 90.98%、Cu 42.10%、Zn 56.98%和Pb 52.03%,4种重金属中Cd的去除效果分别为EDTA>NTA>EDDS> EGTA;EDTA能有效去除酸溶态、可还原态土壤重金属,而对可氧化态和残余态土壤重金属作用效果不明显;EDTA淋洗土种植黑麦草后土壤脱氢酶、碱性磷酸酶和β-葡糖苷酶活性均高于NTA淋洗后土壤中酶活性。综合考虑淋洗效率、淋洗剂的成本和利用价值等因素,可以认为,采用EDTA和NTA淋洗修复重金属污染土壤具有一定的实用性,并以EDTA效果较佳。  相似文献   

10.
To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE’s) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE’s only to a limited extent.The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Feox) and to the reactivity of PTE’s in soils which in fact control the soluble fraction of the contaminants.The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE’s in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils.  相似文献   

11.

Soils can be contaminated by pharmaceuticals. The aim of this study was to evaluate the impact of soil conditions (influencing sorption and persistence of pharmaceuticals in soils) and plant type on the root uptake of selected pharmaceuticals and their transformation in plant-soil systems. Four plants (lamb’s lettuce, spinach, arugula, radish) planted in 3 soils were irrigated for 20 days (26) with water contaminated by one of 3 pharmaceuticals (carbamazepine, atenolol, sulfamethoxazole) or their mixture. The concentrations of pharmaceuticals and their metabolites in soils and plant tissues were evaluated after the harvest. Sulfamethoxazole and atenolol dissipated rapidly from soils. The larger concentrations of both compounds and an atenolol metabolite were found in roots than in leaves. Sulfamethoxazole metabolites were below the limits of quantifications. Carbamazepine was stable in soils, easily uptaken, accumulated, and metabolized in plant leaves. The efficiency of radish and arugula (both family Brassicaceae) in metabolizing was very low contrary to the high and moderate efficiencies of lamb’s lettuce and spinach, respectively. Compounds’ transformations mostly masked the soil impact on their accumulation in plant tissues. The negative relationships were found between the carbamazepine sorption coefficients and its concentrations in roots of radish, lamb’s lettuce, and spinach.

  相似文献   

12.
We evaluated the distribution of 15 metal ions, namely Al, Cd, Cu, Cr, Fe, La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr, in the soil of a contaminated site in Piedmont (Italy). This area was found to be heavily contaminated with Cu, Cr and Ni. The availability of these metal ions was studied using Tessier’s sequential extraction procedure: the fraction of mobile species, which potentially is the most harmful for the environment, was much higher than that normally present in unpolluted soils. This soil was hence used to evaluate the effectiveness of treatment with vermiculite to reduce the availability of the pollutants to two plants, Lactuca sativa and Spinacia oleracea, by pot experiments. The results indicated that the addition of vermiculite significantly reduces the uptake of metal pollutants by plants, confirming the possibility of using this clay in amendment treatments of metal-contaminated soils. The effect of plant growth on metal fractionation in soils was investigated. Finally, the sum of the metal percentages extracted into the first two fractions of Tessier’s protocol was found to be suitable in predicting the phytoavailability of most of the pollutants present in the investigated soil.  相似文献   

13.
Song YF  Jing X  Fleischmann S  Wilke BM 《Chemosphere》2002,48(9):993-1001
The following four methods were compared on the extraction efficiency of 16 EPA (US Environmental Protection Agency) polycyclic aromatic hydrocarbons (PAHs): German method of the Verband Deutscher Landwirtschaftlicher Untersuchungs und Forschungsanstalten (VDLUFA), two methods of the International Organization for Standardization using shaking (ISO A) and Soxhlet extraction (ISO B) and an ultrasonic method. Recovery rates of 16 PAHs were determined in two soils. Extraction efficiency was evaluated in five soils and three sediments. Effect of drying soils and sediments on extraction efficiency was tested using the VDLUFA and the ultrasonic methods. Our study shows that the number of aromatic rings, rather than extraction procedures, significantly influenced recovery rates of individual PAHs. No significant differences in extraction efficiency of the four methods were observed for less polluted samples. For highly polluted soils, extraction efficiency decreased in the following order: VDLUFA method > ISO A > ultrasonic method > ISO B. Influence of soil moisture on extraction efficiency depended to some extent on both solvent used and content of PAHs in samples. A mixture of dichloromethane/acetone (5:1) is recommended for PAH extraction from moist samples when the ultrasonic method is used.  相似文献   

14.
热强化气相抽提技术(T-SVE)在修复半挥发性石油烃污染土壤方面极具应用潜力。本文基于实验室模拟T-SVE装置,研究了加热温度及土壤含水量、有机质对4种半挥发性石油烃(正十三烷、正十四烷、正十五烷和正十六烷)去除效率的影响,并对石油烃去除动力学进行了拟合。结果表明,温度决定性地影响了石油烃污染土壤的修复效率,污染土壤残留率与加热温度基本呈反比。石油烃去除过程符合Elovich和Freundlich热脱附动力学方程。加热温度为140 ℃时,土壤含水量(5%~30%)的增加降低了石油烃去除效率;当温度上升到180 ℃,石油烃去除率在土壤含水量5%~20%时也表现出降低趋势,但在土壤含水量为30%时反而达到最高值。土壤有机质含量增加明显降低了石油烃去除率,尤其对于辛醇-水分配系数值高的石油烃;当加热温度从140 ℃升高到220 ℃,土壤有机质对石油烃污染去除的限制明显降低。实验获得结果可为T-SVE技术修复石油烃污染的工程设计提供参考。  相似文献   

15.
16.
Shu YY  Lai TL  Lin HS  Yang TC  Chang CP 《Chemosphere》2003,52(10):1667-1676
As part of an evaluation of focused microwave-assisted extraction (FMAE) using an open-vessel system, the effects of matrix, moisture content, ageing, and solvent have been studied on the extraction efficiency of polycyclic aromatic hydrocarbons (PAHs) from spiked soils. PAHs were spiked onto three different uncontaminated air dried and originally wet soil matrices with 1- and 20-day ageing periods. Solvents used were hexane–acetone (1:1), cyclohexane–acetone (1:1) and dichloromethane. FMAE only required a small amount of solvent (20 ml) and short extraction time (10 min) in the open cell under 90 W of microwave power. The results revealed that the extraction efficiency strongly depends on the nature of soil matrix; moisture content may enhance the recoveries of PAHs for many cases; and, the influence of the type of solvent is not significant. A comparison between microwave extraction and 16-h Soxhlet extraction has been made on spiked soils. It evidenced that the microwave method under ambient pressure is a suitable alternative to Soxhlet method for the analysis of PAHs in soils. For the evaluation of the developed FMAE method, three reference materials were used. The PAHs recovered from three reference materials were in a good agreement with reference values.  相似文献   

17.
Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.  相似文献   

18.
为了探究EDTA在土壤重金属污染治理中的优化处理方法,采用湿筛和水中重力沉降的方法,从人工Pb污染土壤(原土)中分离提取砂土、粉土和粘土,分析讨论了EDTA对土壤中Pb的去除效果,并从EDTA清洗前后土壤中Pb的BCR形态分布出发,分析了EDTA对不同粒径土壤中各形态Pb的去除效果。研究发现,实验用土壤中砂土、粉土和粘土含量分别为11.2%、75.6%和13.2%,EDTA浓度越高,土壤中Pb去除效果越好,且砂土中Pb最易被去除(~100%),粉土与原土其次(88.66%~96.50%),粘土最难被去除(64.78%~79.60%),但随着EDTA浓度增加,粒径对去除Pb的影响减弱。在土壤修复实践中,可通过利用不同浓度EDTA处理不同粒径土壤的方法达到优化效果。BCR形态分布说明外源性Pb进入土壤后主要以弱酸提取态和可还原态存在,EDTA清洗主要去除弱酸提取态和可还原态,粘土中的各形态去除率均最小。  相似文献   

19.
A washing process was studied to evaluate the efficiency of saponin on remediating heavy metal contaminated soils. Three different types of soils (Andosol: soil A, Cambisol: soil B, Regosol: soil C) were washed with saponin in batch experiments. Utilization of saponin was effective for removal of heavy metals from soils, attaining 90-100% of Cd and 85-98% of Zn extractions. The fractionations of heavy metals removed by saponin were identified using the sequential extraction. Saponin was effective in removing the exchangeable and carbonated fractions of heavy metals from soils. In recovery procedures, the pH of soil leachates was increased to about 10.7, leading to separate heavy metals as hydroxide precipitates and saponin solute. In addition recycle of used saponin is considered to be effective for the subsequent utilization. The limits of Japanese leaching test were met for all of the soil residues after saponin treatment. As a whole, this study shows that saponin can be used as a cleaning agent for remediation of heavy metal contaminated soils.  相似文献   

20.
The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction of pollutants by sonication and soxhlet was conducted before and after the soil washings. Soil A was richer in polycyclic aromatic hydrocarbons, whereas soil B had a larger content of thiophenes. Sonication resulted more analytically efficient in the fine-textured soil B. The coarse-textured soil A was extracted with a general equal efficiency also by soxhlet. Clean-up by water was unable to exhaustively remove contaminants from the two soils, whereas all the organic surfactants revealed very similar efficiencies (up to 90%) in the removal of the contaminants from the soils. Hence, the use of solutions of natural HAs appears as a better choice for soil washings of highly polluted soils due to their additional capacity to promote microbial activity, in contrast to synthetic surfactants, for a further natural attenuation in washed soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号