首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-four experiments where EDU was used to protect plants from ozone (O3) in Italy are reviewed. Doses of 150 and 450 ppm EDU at 2-3 week intervals were successfully applied to alleviate O3-caused visible injury and growth reductions in crop and forest species respectively. EDU was mainly applied as soil drench to crops and by stem injection or infusion into trees. Visible injury was delayed and reduced but not completely. In investigations on mode of action, EDU was quickly (<2 h) uptaken and translocated to the leaf apoplast where it persisted long (>8 days), as it cannot move via phloem. EDU did not enter cells, suggesting it does not directly affect cell metabolism. EDU delayed senescence, did not affect photosynthesis and foliar nitrogen content, and stimulated antioxidant responses to O3 exposure. Preliminary results suggest developing an effective soil application method for forest trees is warranted.  相似文献   

2.
Ameliorative effects of ethylenediurea (N-[2-(2-oxo-1-imidazolinidyl) ethyl]-N′ phenylurea, abbreviated as EDU) against ozone stress were studied on selected growth, biochemical, physiological and yield characteristics of palak (Beta vulgaris L. var Allgreen) plants grown in field at a suburban site of Varanasi, India. Mean eight hourly ozone concentration varied from 52 to 73 ppb which was found to produce adverse impacts on plant functioning and growth characteristics. The palak plants were treated with 300 ppm EDU at 10 days after germination at 10 days interval up to the plant maturity. Lipid peroxidation in EDU treated plants declined significantly as compared to non-EDU treated ones. Significant increment in Fv/Fm ratio in EDU treated plants as compared to non-EDU treated ones was recorded. EDU treated plants showed significant increment in ascorbic acid contents and reduction in peroxidase activity as compared to non-EDU treated ones. As a result of the protection provided by EDU against ozone induced stress on biochemical and physiological characteristics of palak, the morphological parameters also responded positively. Significant increments were recorded in shoot length, number of leaves plant−1, leaf area and root and shoot biomass of EDU treated plants as compared to non-EDU treated ones. Contents of Na, K, Ca, Mg and Fe were higher in EDU treated plants as compared to non-EDU treated ones. The present investigation proves the usefulness of EDU in partially ameliorating ozone injury in ambient conditions.  相似文献   

3.
Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation.  相似文献   

4.
Plants react to O3 threat by setting up a variety of defensive strategies involving the co-ordinated modulation of stress perception, signalling and metabolic responses. Although stomata largely controls O3 uptake, differences in O3 tolerance cannot always be ascribed to changes in stomatal conductance but cell protective and repair processes should be taken into account. O3-driven ROS production in the apoplast induces a secondary, active, self-propagating generation of ROS, whose levels must be finely tuned, by many enzymatic and non-enzymatic antioxidant systems, to induce gene activation without determining uncontrolled cell death. Additional signalling molecules, as ethylene, jasmonic and salicylic acid are also crucial to determine the spreading and the containment of leaf lesions. The main recent results obtained on O3 sensing, signal transduction, ROS formation and detoxification mechanisms are here discussed.  相似文献   

5.
Plants of Bel-W3 and of seven commercial tobacco varieties (Nicotiana tabacum L.) were exposed to two relatively low ozone concentrations (90 or 135 ppb) for 20 consecutive days, for 8 h per day. Ozone caused necrotic and chlorotic spots, acceleration of leaf senescence, depression of photosynthetic mechanism, chlorophyll diminution and greater destruction of chl a than of chl b. The higher sensitivity of chl a was also confirmed by exposure of segments of leaves in test tubes to high ozone concentration (>1000 ppb) as well as by bubbling of ozone in extracts of chlorophyll in vitro. The quantum yield (QY) of photosynthesis was positively correlated with the chlorophyll content and negatively correlated with the visible injury and the chl b/a ratio.  相似文献   

6.
For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model.  相似文献   

7.
Observation-based methods are useful tools to explore the sensitivity of ozone concentrations to precursor controls. With the aim of assessing the ozone precursor sensitivity in two locations: Paterna (suburban) and Villar del Arzobispo (rural) of the Turia river basin in the east of Spain, the photochemical indicator O3/NOy and the Extent-of-Reaction (EOR) parameter have been calculated from field measurements. In Paterna, the O3/NOy ratio varied from 0 to 13 with an average value of 5.1 (SD 3.2), whereas the averaged value for the EOR was 0.43 (SD 0.14). In Villar del Arzobispo, the O3/NOy ratio changed from 5 to 30 with a mean value of 13.6 (SD 4.7) and the EOR gave an averaged value of 0.72 (SD 0.11). The results show two different patterns of ozone production as a function of the location. The suburban area shows a VOC-sensitive regime whereas the rural one shows a transition regime close to NOx-sensitive conditions. No seasonal differences in these regimes are observed along the monitoring campaigns. Finally, an analysis of the influence of the measurement quality of NOy, NOx and O3 on the uncertainty of the O3/NOy ratio and the EOR was performed showing that the uncertainty of O3/NOy is not dependent on either its value or the individual values of O3 and NOy but just on the quality of O3 and NOy measurements. The maximum uncertainty is 26% as long as the combined uncertainties of O3 and NOy remain below the 7.5%. The case of the EOR is different and its uncertainty depends on both the value of the EOR parameter and the individual concentration values of NOy and NOx. The uncertainty of the EOR estimation can be very high (>200%) if the combined uncertainties of both NOy and NOx are high (>7.5%), or especially, if u(NOy) and u(NOx) differ considerably from each other (>3.5%).  相似文献   

8.
In field O3-enrichment experiments increased herbivore densities have been reported, which could be due to negatively affected host location behavior of natural enemies. We addressed the impact of doubling background O3 on the host location of the parasitoid Cotesia plutellae by conducting 24-h trials in an open-air O3-fumigation system during two consecutive years. Two circles (radii 1.40 and 4.00 m) of Plutella xylostella-infested potted cabbage plants were placed in the O3 and ambient plots. Female wasps were released into each plot from the center, and observed 5 times over a 24-h period to assess their host location capability. Thereafter, plants were kept in laboratory conditions until larvae pupation to determine parasitism rates. No significant differences were detected between ambient and O3-enriched environments either in the number of wasps found in the field, or in the percentages of parasitized larvae. This suggests that moderately elevated O3 will not affect the behavior of this parasitoid.  相似文献   

9.
以聚乙二醇-6000(PEG-6000)为模板剂水热法制备碳酸氧铋(p-Bi2O2CO3)粉末,采用X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和紫外可见漫反射(DRS)对粉末进行了初步表征。在可见光(λ≥420 nm)照射下,以罗丹明B(RhB)和水杨酸(SA)光催化降解实验为探针反应,实验结果表明,p-Bi2O2CO3具有较高的光催化活性,对RhB和SA有较好的降解效果。通过紫外-可见光谱(UV-Vis)、红外光谱(IR)和测定总有机碳(TOC)含量,光催化反应35 h后RhB的矿化率为77%,同时对SA的降解率达到43%。同时,采用N,N-二乙基对苯二胺(DPD)分光光度法和对苯二甲酸荧光光度法分别测定了降解过程中H2O2和羟基自由基(·OH)的变化,表明p-Bi2O2CO3/Vis光催化降解机理涉及到·OH历程。  相似文献   

10.
Stomatal ozone uptake, determined with the Jarvis' approach, was related to photosynthetic efficiency assessed by chlorophyll fluorescence and reflectance measurements in open-top chamber experiments on Phaseolus vulgaris. The effects of O3 exposure were also evaluated in terms of visible and microscopical leaf injury and plant productivity. Results showed that microscopical leaf symptoms, assessed as cell death and H2O2 accumulation, preceded by 3-4 days the appearance of visible symptoms. An effective dose of ozone stomatal flux for visible leaf damages was found around 1.33 mmol O3 m−2. Significant linear dose-response relationships were obtained between accumulated fluxes and optical indices (PRI, NDI, ΔF/Fm). The negative effects on photosynthesis reduced plant productivity, affecting the number of pods and seeds, but not seed weight. These results, besides contributing to the development of a flux-based ozone risk assessment for crops in Europe, highlight the potentiality of reflectance measurements for the early detection of ozone stress.  相似文献   

11.
The effects of elevated O3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ13C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O3 detoxification and repair was suggested under elevated O3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O3, this effect being accompanied by lowered Fv/Fm. These results suggest that chronic O3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O3 sensitivity of photosynthesis and accelerated senescence in shade leaves.  相似文献   

12.
Two types of nano-pore substrates, waste-reclaimed (WR) and soil mineral (SM) with the relatively low density, were modified by the reaction with irons (i.e. Fe(II):Fe(III) = 1:2) and the applicability of the modified substrates (i.e. Fe-WR and Fe-SM) on cyanide removal was investigated. Modification (i.e. Fe immobilization on substrate) decreased the BET surface area and PZC of the original substrates while it increased the pore diameter and the cation exchange capacity (CEC) of them. XRD analysis identified that maghemite (γ-Fe2O3) and iron silicate composite ((Mg, Fe)SiO3) existed on Fe-WR, while clinoferrosilite (FeSiO3) was identified on Fe-SM. Cyanide adsorption showed that WR adsorbed cyanide more favorably than SM. The adsorption ability of both original substrates was enhanced by the modification, which increased the negative charges of the surfaces. Without the pH adjustment, cyanide was removed as much as 97% by the only application of Fe-WR, but the undesirable transfer to hydrogen cyanide was possible because the pH was dropped to around 7.5. With a constant pH of 12, only 54% of cyanide was adsorbed on Fe-WR. On the other hand, the pH was kept as 12 without adjustment in Fe-WR/H2O2 system and cyanide was effectively removed by not only adsorption but also the catalytic oxidation. The observed first-order rate constant (kobs) for cyanide removal were 0.49 (±0.081) h−1. Moreover, the more cyanate production with the modified substrates indicated the iron composites, especially maghemite, on substrates had the catalytic property to increase the reactivity of H2O2.  相似文献   

13.
A novel system for continuous and controlled free-air fumigation of mature tree canopies with ozone is described. Ozone generated from oxygen is diluted with air in a pressurized tank and conducted into the canopies by a system of 100 PTFE tubes hanging down from a grid fixed above the crowns. With 45 calibrated outlets per tube providing a constant flow of 0.3 l/min each, a total volume of about 10*10*15 m3 comprising 5 beech and 5 spruce canopies is fumigated. The spatial ozone distribution in the fumigated volume as well as surrounding reference tree canopies is controlled by continuous measuring instruments installed at 4 levels and a dense array of passive samplers. The system will later be used for CO2 fumigation as well. Results of the first year of continuous operation, with 2 * ambient ozone levels having been achieved, are reported.  相似文献   

14.
The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni × T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 °C than at 10 °C.  相似文献   

15.
The present work deals with photooxidative removal of the herbicide, Acid Blue 9 (AB9), in water in the presence of hydrogen peroxide (H2O2) under UV light illumination (30 W). The influence of the basic operational parameters such as amount of H2O2, irradiation time and initial concentration of AB9 on the photodegradation efficiency of the herbicide was investigated. The degradation rate of AB9 was not appreciably high when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of UV light. The photooxidative removal of the herbicide was found to follow pseudo-first-order kinetic, and hence the figure-of-merit electrical energy per order (EEo) was considered appropriate for estimating the electrical energy efficiency. A mathematical relation between the apparent reaction rate constant and H2O2 used was applied for prediction of the electricity consumption in the photooxidative removal of AB9. The results indicated that this kinetic model, based on the initial rates of degradation, provided good prediction of the EEo values for a variety of conditions. The results also indicated that the UV/H2O2 process was appropriate as the effective treatment method for removal of AB9 from the contaminated wastewater.  相似文献   

16.
Zhang G  Chen L  Chen J  Ren Z  Wang Z  Chon TS 《Chemosphere》2012,87(7):734-741
The Stepwise Behavioral Response Model (SBRM), which is a conceptual model, postulated that an organism displays a time-dependent sequence of compensatory Stepwise Behavioral Response (SBR) during exposure to pollutants above their respective thresholds of resistance. In order to prove the model, in this study, the behavioral responses (BRs) of medaka (Oryzias latipes) in the exposure of Arprocarb (A), Carbofuran (C) and Methomyl (M) were analyzed in an online monitoring system (OMS). The Self-Organizing Map (SOM) was utilized for patterning the obtained behavioral data in 0.1 TU (Toxic Unit), 1 TU, 2 TU, 5 TU, 10 TU and 20 TU treatments with control. Some differences among different Carbamate Pesticides (CPs) were observed in different concentrations and the profiles of behavior strength (BS) on SOM were variable depending upon levels of concentration. The time of the first significant decrease of BS (SD-BS) was in inverse ratio to the CP concentrations. Movement behavior showed by medaka mainly included No effect, Stimulation, Acclimation, Adjustment (Readjustment) and Toxic effect, which proved SBRM as a time-dependence model based on the time series BS data. Meanwhile, it was found that SBRM showed evident stress-dependence. Therefore, it was concluded that medaka SBR was both stress-dependent and time-dependent, which supported and developed SBRM, and data mining by SOM could be efficiently used to illustrate the behavioral processes and to monitor toxic chemicals in the environment.  相似文献   

17.
In this study, prediction capacities of multi-linear regression (MLR) and artificial neural networks (ANN) onto coarse particulate matter (PM10) concentrations were investigated. Different meteorological factors on particulate pollution were chosen for operating variables in the model analyses. Two different regions (urban and industrial) were identified in the region of Kocaeli, Turkey. All data sets were obtained from air quality monitoring network of the Ministry of Environment and Urban Planning, and 120 data sets were used in the MLR and ANN models. Regression equations explained the effects of the meteorological factors in MLR analyses. In the ANN model, backpropagation network with two hidden layers has achieved the best prediction efficiency. Determination coefficients and error values were examined for each model. ANN models displayed more accurate results compared to MLR.  相似文献   

18.
The effects of experimentally elevated O3 on soil respiration rates, standing fine-root biomass, fine-root production and δ13C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with contrasting rainfall patterns. During humid 2002, soil respiration rate was enhanced under elevated O3 under beech and spruce, and was related to O3-stimulated fine-root production only in beech. During dry 2003, the stimulating effect of O3 on soil respiration rate vanished under spruce, which was correlated with decreased fine-root production in spruce under drought, irrespective of the O3 regime. δ13C signature of newly formed fine-roots was consistent with the differing gs of beech and spruce, and indicated stomatal limitation by O3 in beech and by drought in spruce. Our study showed that drought can override the stimulating O3 effects on fine-root dynamics and soil respiration in mature beech and spruce forests.  相似文献   

19.
Chen HW  Chen CY  Wang GS 《Chemosphere》2011,85(4):591-597
The presence of various organic contaminants in water sources is of concern due to their direct threats to human health and potential to react with disinfectants to form carcinogenic byproducts including trihalomethanes, haloacetic acids and nitrosamines in finished water. This study applied both medium-pressure and low-pressure ultraviolet light coupled with hydrogen peroxide (UV/H2O2) to evaluate its efficacy for degradation of selected nitrogenous organic compounds and corresponding disinfection byproduct (DBP) formation. Six organic compounds were chosen as target precursors based on their nitrogen contents and molecular structures. The results showed that higher oxidation capacity resulted in better reduction of organic matters and DBP formation potentials (DBPFPs). However, insufficient contact time and oxidant doses could lead to a rise of DBPFPs in the early stages of UV/H2O2 reactions. A greater percentage removal was achieved for organic carbon than organic nitrogen after UV/H2O2 treatment, especially for compounds with complicated structure such as diltiazem. During the UV/H2O2 treatment, the intermediate products include tertiary amine, dimethyl amine (DMA) or DMA-like structures, which are N-nitrosodimethylamine (NDMA) precursors after chlorination or chloramination. Furthermore, it was observed that using dissolved organic nitrogen and DMA to predict NDMAFP could lead to biased conclusions because of the complex nature of nitrogenous matters in aqueous environments.  相似文献   

20.
Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human–ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号