首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
Phytoremediation has been recognized as a cheap and eco-friendly technology which could be used for the remediation of organic pollutants, such as phenolic compounds. Besides, the extent to which plants react to environmental pollution might depend on rhizosphere processes such as mycorrhizal symbiosis. In the present work, phenol tolerance of transgenic tobacco hairy roots (HR), namely TPX1, colonized with an arbuscular mycorrhizal fungus (AMF) was studied. However, the question is whether AMF symbiosis can moderate adverse effects of phenol to the plant tissues. Thus, the antioxidative response as well as parameters of oxidative damage, like malondialdehyde (MDA) content, were determined. Antioxidative enzymes such as peroxidase, superoxide dismutase, ascorbate peroxidase were higher in TPX1 HR colonized with AMF, compared to wild type HR colonized by AMF, in the presence of increasing concentrations of the pollutant. Besides, MDA levels remained unaltered in TPX1 HR associated with AMF treated with the xenobiotic. These results, suggested that this culture could tolerate phenol and moreover, it has an efficient protective mechanism against phenol-induced oxidative damage, which is of great importance in the selection of species with remediation capacities. Thus, transgenic HR colonized with AMF could be considered as an interesting model system to study different processes which play a key role in the phytoremediation of organic pollutants.  相似文献   

2.
Malondialdehyde (MDA), a product of lipid peroxidation and biomarker of oxidative stress, is measured over the long term in spruce Picea abies needles under real conditions in three Czech mountain border areas. The trends presented collate the MDA content in spruce needles with ambient ozone, temperature and precipitation as casual, and defoliation as a subsequent factor for the period 1994-2006. We have found the overall decreasing trends in MDA and defoliation. The highest MDA and defoliation are recorded in the Jizerske, the lowest in the Krusne hory Mts. Out of the examined variables the MDA is predicted best by mean temperature in vegetation season, median of O3 concentrations and AOT40; these three variables account for 34% of MDA1 and 36% of MDA2 variability. Our hypothesis that higher ambient O3 exposure results in higher MDA contents in P. abies needles under real conditions has not been approved.  相似文献   

3.
Wu JP  Li MH  Chen JS  Lee HL 《Chemosphere》2012,87(11):1341-1347
Cigarette smoke is a risk factor for human health, and many studies were conducted to investigate its adverse effects on humans and other mammals. However, since large amounts of cigarette products are produced and consumed, it is possible that tobacco chemicals can end up in aquatic environments through several routes, thus influencing aquatic organisms. In this study, the presence of tobacco-specific nitrosamine (TSNA), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in aquatic environment was demonstrated. Since toxic effects on and distribution patterns of tobacco chemicals in aquatic organisms were rarely studied, after results of an acute toxicity pretest were obtained, experiment was conducted to investigate the bioaccumulation pattern of NNK and distribution patterns of its metabolites, mainly 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), in NNK-treated freshwater planarians, Dugesia japonica. Results from in vivo and in vitro studies showed that NNK was readily converted to NNAL through the carbonyl reduction in bodies of NNK-treated planarians. Tissue concentrations of both chemicals increased in time- and dose-dependent manners. Furthermore, we examined the end products of NNK/NNAL α-hydroxylation in NNK-treated planarians, but only 1-(3-pyridyl)-1,4-butanediol was detected, suggesting that NNK metabolism in planarians partially differs from that in mammalian systems. This is the first report on NNK metabolism in an aquatic organism and can be used as a foundation for developing freshwater planarians as a new in vivo model for the study of NNK toxicology in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号