首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Usman AR  Lee SS  Awad YM  Lim KJ  Yang JE  Ok YS 《Chemosphere》2012,87(8):872-878
In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAFshoots and BAFroots) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg−1, 27.78-120.83 mg kg−1, and 0.13-9.43 mg kg−1, respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg−1) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAFshoot (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAFroot values > 1 and TF values < 1 were suitable; however, Typha orientalis was the best for Cr.  相似文献   

2.
Metal uptake and its effect on foliar metallothionein 2b (MT2b) mRNA levels were studied in hybrid aspen (Populus tremula × tremuloides) in field conditions. The trees were planted on a site contaminated with several metals, including cadmium (mean 5.1 mg kg−1), chromium (80 mg kg−1), copper (180 mg kg−1), nickel (81 mg kg−1), vanadium (240 mg kg−1) and zinc (520 mg kg−1). Of the ten trace elements analyzed, only Cd and Zn accumulated in the leaves with maximal foliar concentrations of 35 and 2400 mg kg−1 (dry weight), respectively. There was a strong correlation between Cd and Zn concentrations and bioaccumulation factors (concentration in plant/soil) in the leaves, branches and roots, suggesting similar transport mechanisms for these two metals. The levels of MT2b correlated with Cd and Zn concentrations in the leaves, demonstrating that increased MT2b expression is one of the responses of hybrid aspen to chronic metal exposure.  相似文献   

3.
Mature Lumbricus terrestris were host soils and leaf litter were collected from a former arsenic mine in Devon, UK (Devon Great Consols), a former gold mine in Ontario, Canada (Deloro), and an uncontaminated residential garden in Nottingham, UK. Arsenic concentrations determined by inductively coupled plasma-mass spectrometry (ICP-MS) in soils were 16-348 mg kg−1, 6.0-239 mg kg−1 in the earthworms and 8.6 mg kg−1 in leaf litter sampled at Deloro (all dry weight). High performance liquid chromatography (HPLC-ICP-MS) analysis revealed arsenite (AsIII), arsenate (AsV) and five organoarsenic species; arsenobetaine (AB), methylarsonate (MAV), dimethylarsinate (DMAV), arsenosugar 1 (glycerol sugar), arsenosugar 2 (phosphate sugar), and trimethylarsineoxide (TMAO) in field-collected L. terrestris. Differences were observed in the variety of organoarsenic species present between field sites. Several organoarsenic species were observed in the leaf litter (DMAV, arsenosugar 2 and TMAO) but not AB. Depuration resulted in higher concentrations of inorganic As being detected in the earthworm whereas the concentration or variety of organoarsenic species was unchanged. Commercially sourced L. terrestris were exposed to As contaminated soil in laboratory mesocosms (1.0, 98, 183, 236, 324 and 436 mg kg−1) without leaf litter and were additionally analyzed using X-ray absorption near edge structure (XANES). Only inorganic AsIII and AsV was observed. It is proposed that ingestion of leaf litter and symbiotic processes in the natural soil environment are likely sources of organoarsenic compounds in field-collected L. terrestris.  相似文献   

4.
Okorie A  Entwistle J  Dean JR 《Chemosphere》2012,86(5):460-467
The pseudo-total and oral bioaccessible concentration of six potentially toxic elements (PTEs) in urban street dust was investigated. Typical pseudo-total concentrations across the sampling sites ranged from 4.4 to 8.6 mg kg−1 for As, 0.2-3.6 mg kg−1 for Cd, 25-217 mg kg−1 for Cu, 14-46 mg kg−1 for Ni, 70-4261 mg kg−1 for Pb, and, 111-652 mg kg−1 for Zn. This data compared favourably with other urban street dust samples collected and analysed in a variety of cities globally; the exception was the high level of Pb determined in a specific sample in this study. The oral bioaccessibility of PTEs in street dust is also assessed using in vitro gastrointestinal extraction (Unified Bioaccessibility Method, UBM). Based on a worst case scenario the oral bioaccessibility data estimated that Cd and Zn had the highest % bioaccessible fractions (median >45%) while the other PTEs i.e. As, Cu, Ni and Pb had lower % bioaccessible fractions (median <35%). The pseudo-total and bioaccessible concentrations of PTEs in the samples has been compared to estimated tolerable daily intake values based on unintentional soil/dust consumption. Cadmium, Cu and Ni are well within the oral tolerable daily intake rates. With respect to As and Pb, only the latter exceeds the TDIoral if we model ingestion rate based on atmospheric ‘dustiness’ rather than the US EPA (2008) unintentional soil/dust consumption rate of 100 mg d−1. We consider it unlikely that even a child with pica tendencies would ingest as much as 100 mg soil/dust during a daily visit to the city centre, and in particular to the sites with elevated Pb concentrations observed in this study.  相似文献   

5.
A field survey and greenhouse experiments were conducted using Physalis alkekengi L. to investigate strategies of phytoremediation. In addition, ZnO nanoparticles were synthesized using P. alkekengi. P. alkekengi plants grew healthily at Zn levels from 50 to 5000 mg kg−1 in soils. The plants incorporated Zn into their aerial parts (with mean dry weight values of 235-10,980 mg kg−1) and accumulated biomass (with a mean dry weight of 25.7 g plant−1) during 12 weeks. The synthesized ZnO nanoparticles showed a polydisperse behavior and had a mean size of 72.5 nm. The results indicate that P. alkekengi could be used for the remediation of zinc-contaminated soils. Moreover, the synthetic method of synthesizing ZnO nanoparticles from Zn hyperaccumulator plants constitutes a new insight into the recycling of metals in plant sources.  相似文献   

6.
Ecotoxicological risks of agricultural application of six insecticides to soil organisms were evaluated by acute toxicity tests under laboratory condition following OECD guidelines using the epigeic earthworm Eisenia fetida as the test organism. The organochlorine insecticide endosulfan (LC50 - 0.002 mg kg−1) and the carbamate insecticides aldicarb (LC50 - 9.42 mg kg−1) and carbaryl (LC50 - 14.81 mg kg−1) were found ecologically most dangerous because LC50 values of these insecticides were lower than the respective recommended agricultural dose (RAD). Although E. fetida was found highly susceptible to the pyrethroid insecticide cypermethrin (LC50 - 0.054 mg kg−1), the value was higher than its RAD. The organophosphate insecticides chlorpyrifos (LC50 - 28.58 mg kg−1), and monocrotophos (LC50 - 39.75 mg kg−1) were found less toxic and ecologically safe because the LC50 values were much higher than their respective RAD.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg−1) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg−1) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg−1), Cu (60.0 to 120.1 mg kg−1) and Ni (31.7 to 83.0 mg kg−1) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg−1). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed.  相似文献   

8.
This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg−1 and Sector 3: pH 4.2, total Cu = 112 mg Cu kg−1) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg−1 (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils.  相似文献   

9.
Fresh and pasteurized milk samples from Kampala markets were analyzed for organochlorine pesticides using a gas chromatograph equipped with an electron capture detector. Five organochlorine pesticides, namely; aldrin, dieldrin, endosulfan, lindane, DDT and its metabolites were detected in the milk samples and confirmed with a gas chromatograph equipped with a mass spectrometer [GC-MS]. The mean values are expressed in mg kg−1 milk fat (mf) basis. The mean concentration in the fresh milk (= 54) were: 0.026 ± 0.003 mg kg−1 mf; 0.002 ± 0.0003 mg kg−1, below the detection limit; 0.007 ± 0.003 mg kg−1, 0.009 ± 0.002 mg kg−1 milk fat for lindane, endosulfan dieldrin and aldrin, respectively. The mean concentrations of p,p′-DDE; p,p′-DDT and o,p′-DDT were 0.009 ± 0.002 mg kg−1; 0.033 ± 0.007 mg kg−1 and 0.008 ± 0.001 mg kg−1 mf, respectively in the fresh milk samples.In the pasteurized milk samples (= 47), the mean concentrations recorded were: 0.008 ± 0.003 mg kg−1, 0.025 ± 0.004 mg kg−1, and 0.007 ± 0.001 mg kg−1, respectively for p,p′-DDE; p,p′-DDT and o,p′-DDT.Alpha and beta-endosulfan recorded the concentration below the detection limit and the mean of 0.022 ± 0.001 mg kg−1 mf, 0.005 ± 0.002 mg kg−1 mf, and 0.006 ± 0.0002 mg kg−1 mf, respectively for lindane, dieldrin and aldrin. Although, most of the residues detected were above the residue limits set by the FAO/WHO (2008), bioaccumulation of these residues is likely to pose health risks to the consumers of milk in Uganda.  相似文献   

10.
Enchytraeus crypticus as model species in soil ecotoxicology   总被引:1,自引:0,他引:1  
Enchytraeids are ecologically relevant soil organisms, due to their activity in decomposition and bioturbation in many soil types worldwide. The enchytraeid reproduction test (ERT) guidelines ISO 16387 and OECD 220 are exclusive to the genus Enchytraeus and recommend using the species E. albidus with a 6-week test period. The suggested alternative, E. crypticus has a shorter generation time which may enable the ERT to be twice as fast. To confirm the suitability of a 3-week test period for E. crypticus, the toxicity of five chemicals, with distinct properties and modes of action, was assessed in LUFA 2.2 soil. In all controls the validity criteria were met, as survival of E. crypticus was above 92% and more than 772 juveniles were produced. The good performance supports its appropriateness as model species. Reproduction was more sensitive than survival, with only cadmium and 3,5-dichloroaniline causing significant lethal effects in the tested concentration ranges. The effect concentration causing 50% reduction in the number of juveniles (EC50) was 35 mg kg−1 for cadmium, <1.0 mg kg−1 for carbendazim, 145 mg kg−1 for phenanthrene, 275 mg kg−1 for pentachloroaniline and 102 mg kg−1 for 3,5-dichloroaniline. To evaluate the sensitivity of E. crypticus, the present results were compared to literature data for E. albidus. In conclusion, E. crypticus is a suitable model species in soil ecotoxicology, with advantages such as good control performance and speed, leading to a reliable and faster ERT.  相似文献   

11.
Adverse effects of agrochemicals on earthworms’ burrowing behaviour can have crucial impacts on the entire ecosystem. In the present study, we have therefore assessed short- and long-term effects on burrowing behaviour in the earthworm species Aporrectodea caliginosa and Lumbricus terrestris after exposure to a range of imidacloprid concentrations (0.2-4 mg kg−1 dry weight (DW)) for different exposure times (1, 7, 14 d). 2D-terraria were used for the examination of post-exposure short-term effects (24-96 h), while post-exposure long-term effects were assessed by means of X-ray burrow reconstruction in three dimensional soil cores (6 weeks). For the latter each core was incubated with two specimens of L. terrestris and four of A. calignosa. Short-term effects on the burrowing behaviour (2D) of A. caliginosa were already detected at the lowest test concentration (0.2 mg kg−1 DW), whereas such effects in L. terrestris were not observed until exposure to concentrations 10 times higher (2 mg kg−1 DW). For both species tested in the 2D-terraria, “total burrow length after 24 h” and “maximal burrow depth after 24 h” were the most sensitive endpoints. 3D reconstructions of the burrow systems made by both earthworm species in the repacked soil cores revealed a significant linear decrease in burrow volume with increasing imidacloprid concentration.Since many of the observed effects occurred at imidacloprid concentrations relevant to natural conditions and since reduced activities of earthworms in soils can have crucial impacts on the ecosystem level, our results are of environmental concern.  相似文献   

12.
The pot-culture experiment and field studies were conducted to screen out and identify cadmium (Cd) excluders from 40 Chinese cabbage genotypes for food safety. The results of the pot-culture experiment indicated that the shoot Cd concentrations under three treatments (1.0, 2.5 and 5.0 mg Cd kg−1 Soil) varied significantly (p < 0.05), with average values of 0.70, 3.07 and 5.83 mg kg−1, respectively. The Cd concentrations in 12 cabbage genotypes were lower than 0.50 mg kg−1. The enrichment factors (EFs) and translocation factors (TFs) in 8 cabbage genotypes were lower than 1.0. The field studies further identified Lvxing 70 as a Cd-excluder genotype (CEG), which is suitable to be planted in low Cd-contaminated soils (Cd concentration should be lower than 1.25 mg kg−1) for food safety.  相似文献   

13.
We conducted acute toxicity tests and sediment toxicity tests for copper pyrithione (CuPT) and a metal pyrithione degradation product, 2,2′-dipyridyldisulfide [(PS)2], using a marine polychaete Perinereis nuntia. The acute toxicity tests yielded 14-d LC50 concentrations for CuPT and (PS)2 of 0.06 mg L−1 and 7.9 mg L−1, respectively. Sediment toxicity tests resulted in 14-d LC50 concentrations for CuPT and (PS)2 of 1.1 mg kg−1 dry wt. and 14 mg kg−1 dry wt., respectively. In addition to mortality, sediment avoidance behavior and decreases in animal growth rate were observed; growth rate was the most susceptible endpoint in the sediment toxicity tests of both toxicants. Thus, we propose lowest observed effect concentrations of 0.3 mg kg−1 dry wt. and 0.2 mg kg−1 dry wt. for CuPT and (PS)2, respectively, and no observed effect concentrations of 0.1 mg kg−1 dry wt. for both CuPT and (PS)2. The difference in the toxicity values between CuPT and (PS)2 observed in the acute toxicity test was greater than the difference in these values in the sediment toxicity test, and we attribute this to (PS)2 being more hydrophilic than CuPT. In addition to the toxicity tests, we analyzed conjugation activity of several polychaete enzymes to the toxicants and marked activity of palmitoyl coenzyme-A:biocides acyltransferase and UDP-glucuronosyl transferase was observed.  相似文献   

14.
Four microbial species (Kocuria rhizophila, Microbacterium resistens, Staphylococcus equorum and Staphylococcus cohnii subspecies urealyticus) were isolated from the rhizospheric zone of selected plants growing in a lindane contaminated environment and acclimatized in lindane spiked media (5-100 μg mL−1). The isolated species were inoculated with soil containing 5, 50 and 100 mg kg−1 of lindane and incubated at room temperature. Soil samples were collected periodically to evaluate the microbial dissipation kinetics, dissipation rate, residual lindane concentration and microbial biomass carbon (MBC). There was a marked difference (p < 0.05) in the MBC content and lindane dissipation rate of microbial isolates cultured in three different lindane concentrations. Further, the dissipation rate tended to decrease with increasing lindane concentrations. After 45 d, the residual lindane concentrations in three different spiked soils were reduced to 0%, 41% and 33%, respectively. Among the four species, S. cohnii subspecies urealyticus exhibited maximum dissipation (41.65 mg kg−1) and can be exploited for the in situ remediation of low to medium level lindane contaminated soils.  相似文献   

15.
Fluoride (F) contamination is a global environmental problem, as there is no cure of fluorosis available yet. Prosopis juliflora is a leguminous perennial, phreatophyte tree, widely distributed in arid and semi-arid regions of world. It extensively grows in F endemic areas of Rajasthan (India) and has been known as a “green” solution to decontaminate cadmium, chromium and copper contaminated soils. This study aims to check the tolerance potential of P. juliflora to accumulate fluoride. For this work, P. juliflora seedlings were grown for 75 d on soilrite under five different concentrations of F viz., control, 25, 50, 75 and 100 mg NaF kg−1. Organ-wise accumulation of F, bioaccumulation factor (BF), translocation factor (TF), growth ratio (GR) and F tolerance index (TI) were examined. Plant accumulated high amounts of F in roots. The organ-wise distribution showed an accumulation 4.41 mg kg−1dw, 12.97 mg kg−1dw and 16.75 mg kg−1dw F, in stem, leaves and roots respectively. The results indicated significant translocation of F from root into aerial parts. The bioaccumulation and translocation factor values (>1.0) showed high accumulation efficiency and tolerance of P. juliflora to F. It is concluded that P. juliflora is a suitable candidate for phytoremediation purpose and can be explored further for the decontamination of F polluted soils.  相似文献   

16.
Yoshitomi B  Nagano I 《Chemosphere》2012,86(9):891-897
Yellowtail (Seriola quinqueradiata) is the most important cultured marine fish in Japan. Dietary fish meal for yellowtail in aquaculture was replaced with 0.0%, 15.4% and 100.0% Antarctic krill meal (KM0, KM15, and KM100) and with 0.0%, 15.4%, and 100.0% low-fluoride krill meal (LFK0, LFK15 and LFK100). The fish was fed to duplicate fish groups for 92 d (KM trial) or 75 d (LFK trial), and fish growth was monitored.Dietary fluoride (F) concentrations (mg kg−1) were 110, 160, and 580 (KM0, KM15, and KM100, respectively) and 98, 120, and 190 (LFK0, LFK15, and LFK100, respectively). The growth during the experimental period, weight gain, feed intake, specific growth rate, and feed efficiency in fish fed the KM100 diet were markedly lower than the other experimental groups, which showed no marked differences in growth performance.After the experiment, dorsal muscle fluoride concentrations in each group were below the detectable limit (1 mg kg−1), but vertebral bone fluoride concentrations increased with increasing proportion of KM to 655 (KM0), 870 (KM15), and 2150 (KM100) mg kg−1. With increasing LFK in the feed, vertebral bone fluoride concentrations (mg kg−1) increased slightly from 500 (LFK0) to 655 (LFK15), and 695 (LFK100). No histopathological changes were detected in the liver tissue in any experimental group.It has been reported that the fluoride bioavailability was reduced with increasing water hardness, however, the dietary fluoride derived from KM exoskeleton accumulates in vertebral bones of marine fish with growth inhibition, as has already been shown for freshwater fish. Vertebral bone fluoride concentrations in two krill-eating Antarctic marine fish in the wild were 33 000 mg kg−1 (Champsocephalus gunnari) and 15 000 mg kg−1 (Notothenia rossii), but they did not show any adverse effect of growth. Therefore, fish bone fluoride accumulation apparently depends on fish species rather than the salinity of the habitat. Consequently, krill exoskeleton must be removed during the processing of Antarctic krill if indeed these krill are to be used as fish feed. However, LFK can completely replace dietary fish meal without apparent adverse effects.  相似文献   

17.
Commercially important fresh (581) and frozen (292) marine fish samples of 10 species were collected from seafood factories and evaluated using AAS and ICP-OES. Metal levels significantly (p < 0.05) varied within and between species. However, there were no significant correlations among metals. There were significant interspecific differences for all metals, and yellowfin tuna had the highest level of cadmium and mercury however, red seabream had maximum numbers above the standards. The metal accumulation significantly varied between bottom feeders of intermediately size locally caught fish. The mean cadmium level ranged from 0.0049 to 0.036 mg kg−1 and 1.37% of the total samples exceeded the EU and FAO standards. Mean lead content varied between 0.029 and 0.196 mg kg−1, few samples crossed the EU (2.63%) and FAO (1.6%) limits. Mean mercury level ranged from 0.015 to 0.101 mg kg−1 and none of the samples exceeded the EU limit. Of the total samples analyzed red seabream (2.06%), yellowfin tuna (1.14%), emperor (0.34%), santer bream (0.22%), king fish (0.11%) and skipjack tuna (0.11%) samples crossed the EU limits. In general, fish from these regions are within the safety levels recommended by various organizations and do not pose a health risk in terms of human diet.  相似文献   

18.
Lindane removal by pure and mixed cultures of immobilized actinobacteria   总被引:1,自引:0,他引:1  
Stereoselective dissipation of epoxiconazole had been studied in grape and soil during plant growing under field conditions in this paper. A sensitive and rapid chiral method was developed and validated for the determination of epoxiconazole stereoisomers in grape and soil based on liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS). Phenomenex Lux Cellulose-1 column was used for enantioseparation with a mixture of acetonitrile/water (90/10, v/v) as mobile phase at flow rate of 0.3 mL min−1. Fortified recoveries in grape and soil samples ranged from 76.0% to 91.9% and relative standard deviations were less than 11.4% with fortified levels of 0.025-1.0 mg kg−1. The limits of detection and quantification were 0.005 mg kg−1 and 0.025 mg kg−1, respectively, with linear calibration curves extending up to 5.0 mg kg−1. The field experimental results showed that dissipations of epoxiconazole stereoisomers in grape followed first-order kinetics (R2 > 0.92) and stereoselectivity occurred in 2 h after spraying. The (−)-stereoisomer with half-life of 9.3 d degraded faster than (+)-stereoisomer with that of 13.2 d, and resulted in relative enrichment of (+)-stereoisomer. However, the stereoisomeric dissipations in soil were triphasic (“increase-decrease-steady”) with lower dissipation rates, and also occurred with preferential degradation of (−)-stereoisomer under field condition. The results for stereoselective dissipations can be applied for food and environmental assessments of chiral pesticides.  相似文献   

19.
To highlight the effects of a variety of chlorophenols (CP) in relation to the response of an indigenous bacterial community, an agricultural Mediterranean calcareous soil has been studied in microcosms incubated under controlled laboratory conditions. Soil samples were artificially polluted with 2-monochlorophenol (MCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP), at concentrations ranging from 0.1 up to 5000 mg kg−1. Both activity and composition of the microbial community were assessed during several weeks, respectively, by respirometric methods and PCR-DGGE analysis of extracted DNA and RNA. Significant decreases in soil respirometric values and changes in the bacterial community composition were observed at concentrations above 1000 mg kg−1 MCP and TCP, and above 100 mg kg−1 PCP. However, the persistence of several active bacterial populations in soil microcosms contaminated with high concentration of CP, as indicated by DGGE fingerprints, suggested the capacity of these native bacteria to survive in the presence of the pollutants, even without a previous adaptation or contact with them.The isolation of potential CP degraders was attempted by culture plating from microcosms incubated with high CP concentrations. Twenty-three different isolates were screened for their resistance to TCP and PCP. The most resistant isolates were identified as Kocuria palustris, Lysobacter gummosus, Bacillus sp. and Pseudomonas putida, according to 16S rRNA gene homology. In addition, these four isolates also showed the capacity to reduce the concentration of TCP and PCP from 15% to 30% after 5 d of incubation in laboratory assays (initial pollutant concentration of 50 mg L−1). Isolate ITP29, which could be a novel species of Bacillus, has been revealed as the first known member in this bacterial group with potential for CP bioremediation applications, usually wide-spread in the soil natural communities, which has not been reported to date as a CP degrader.  相似文献   

20.
Pociecha M  Lestan D 《Chemosphere》2012,86(8):843-846
Soil washing with EDTA is known to be an effective means of removing toxic metals from contaminated soil. A practical way of recycling of used soil washing solution remains, however, an unsolved technical problem. We demonstrate here, in a laboratory scale experiment, the feasibility of using acid precipitation to recover up to 50% of EDTA from used soil washing solution obtained after extraction of Pb (5330 mg kg−1), Zn (3400 mg kg−1), Cd (35 mg kg−1) and As (279 mg kg−1) contaminated soil. Up to 100% of EDTA residual in the washing solution and 100%, 97%, 98% and 100% of initial Pb, Zn, Cd and As concentration in the solution, respectively, were removed in an electrolytic cell using a graphite anode. We employed the recovered EDTA and treated washing solution to prepare recycled soil washing solution with the same potential for extracting toxic metals from soil as the original. The efficiency of soil washing depends on the EDTA concentration. Using twice recycled 30 mmol EDTA kg−1 soil, we removed 44%, 20%, 53% and 61% of Pb, Zn, Cd and As, respectively, from contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号