首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparison of the modelling results of persistent, bioaccumulative and toxic (PBT) chemicals is presented with measurements. Contribution will present mean annual concentrations calculated and observed at EMEP stations and their ratios. The comparison of the calculated results with older results indicates that the model modification improved the agreement with measurement data. PBT compounds in ambient air are monitored in the area of Kosetice observatory (professional observatory of the Czech Hydrometeorological Institute located in south Bohemia). Calculated and measured mean annual concentrations of PBTs in precipitation, soil, vegetation and their ratios are presented. It should be mentioned that the number of measurements in such compartments as seawater, soil and vegetation is insufficient for model verification at present. The agreement between results from MSC-East models and results from long-term regional air background monitoring in Central Europe is good.  相似文献   

2.
The NOAA Buoy model is currently used to estimate the air–sea transfer rates of highly soluble gases over coastal water bodies, such as Tampa Bay, using offshore meteorological measurements. Since a goal of the BRACE study was to improve estimates of nitrogen deposition over Tampa Bay, our objective was to investigate if the model accurately predicts gas transfer when shoreline input data are used in lieu of offshore measurements. To accomplish this objective, we compared over-water measurements of sensible heat with NOAA Buoy model predictions using both offshore and shoreline meteorology. In the summer months, the apparent daytime influence of land surface heating on air temperature produces a higher air than water temperature at the shoreline. For the NOAA Buoy model, this yields stable atmospheric conditions and thus under-predicts the over-water exchange rates for a shallow estuary. If the data records are removed from the model for periods when air temperature is 4.8 K greater than the water temperature, the shoreline and over-water transfer rates are in reasonable agreement.  相似文献   

3.
Abstract

It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.  相似文献   

4.
Experiments have shown that the oceans release a significant fraction of the yearly global emissions of carbonyl sulfide to the atmosphere. The experimental methods used to obtain, store and analyze air and water samples for OCS measurements are discussed and measurements of the Henry's constant in seawater at temperatures between 0 and 30°C are reported. The results are applied to oceanic flux models, and the global yearly emissions of OCS from oceans to the atmosphere are calculated to be ~8 × 1011 gm/yr (0.8 Tg yr?1).  相似文献   

5.
Endosulfan in China 2—emissions and residues   总被引:4,自引:0,他引:4  
Background, aim, and scope  Endosulfan is one of the organochlorine pesticides (OCPs) and also a candidate to be included in a group of new persistent organic pollutants (UNEP 2007). The first national endosulfan usage inventories in China with 1/4° longitude by 1/6° latitude resolution has been reported in an accompanying paper. In the second part of the paper, we compiled the gridded historical emissions and soil residues of endosulfan in China from the usage inventories. Based on the residue/emission data, gridded concentrations of endosulfan in Chinese soil and air have been calculated. These inventories will provide valuable data for the further study of endosulfan. Methods  Emission and residue of endosulfan were calculated from endosulfan usage by using a simplified gridded pesticide emission and residue model—SGPERM, which is an integrated modeling system combining mathematical model, database management system, and geographic information system. By using the emission and residue inventories, annual air and soil concentrations of endosulfan in each cell were determined. Results and discussion  Historical gridded emission and residue inventories of α- and β-endosulfan in agricultural soil in China with 1/4° longitude by 1/6° latitude resolution have been created. Total emissions were around 10,800 t, with α-endosulfan at 7,400 t and β-endosulfan at 3,400 t from 1994 to 2004. The highest residues were 140 t for α-endosulfan and 390 t for β-endosulfan, and the lowest residues were 0.7 t for α-endosulfan and 170 t for β-endosulfan in 2004 in Chinese agricultural soil where endosulfan was applied. Based on the emission and residue inventories, concentrations of α- and β-endosulfan in Chinese air and agricultural surface soil were also calculated for each grid cell. We have estimated annual averaged air concentrations and the annual minimum and maximum soil concentrations across China. The real concentrations will be different from season to season. Although our model does not consider the transport of the insecticide in the atmosphere, which could be very important in some areas during some special time, the estimated concentrations of endosulfan in Chinese air and soil derived from the endosulfan emission and residue inventories are in general consistent with the published monitoring data. Conclusions  To our knowledge, this work is the first inventory of this kind for endosulfan published on a national scale. Concentrations of the chemical in Chinese air and agricultural surface soil were calculated for each grid cell. Results show that the estimated concentrations of endosulfan in Chinese air and soil agree reasonably well with the monitoring data in general. Recommendations and perspectives  The gridded endosulfan emission/residue inventories and also the air and soil concentration inventories created in this study will be updated upon availability of new information, including usage and monitoring data. The establishment of these inventories for the OCP is important for both scientific communities and policy makers.  相似文献   

6.
SCOPE AND BACKGROUND: In the course of the European Council Directive on permissible air pollutant limit values, valid starting from 2005 there is an urgent call for action, particularly for fine dust (PM10). Current investigations (Junk & Helbig 2003, Reuter & Baumüller 2003) show that the limit values in certain places in congested areas are exceeded. Only if it is possible to locate these Hot Spots purposeful measures to reduce the ambient air pollution can be conducted. For an efficient identification of these Hot Spots numerical computer models or establishing special measurements networks are too expensive. Using the statistical model STREET 5.0 (KTT 2003) a cost-effective screening of the air pollution situation caused by the traffic can be done. METHODS: STREET is based on the 3-dimensional micro-scale non-hydrostatic flow- and dispersion model MISCAM (Eichhorn 1989). The results of over 100.000 different calculations with MISCAM are stored in a Database and used to calculate the emissions with STREET. In collaboration with the city council of Trier more than 150 streets were investigated, mapped, and calculated. A special urban climate measuring network supplies the necessary meteorological input data about the wind field and precipitation events in the valley of the Moselle. Information about road width and road orientation as well as building density was derived from aerial photographs. Traffic censuses and mobile air pollutants measurements supplied the remaining input data. We calculated the mean annual air pollutant concentrations for NO2, CO, SO2, O3, benzene as well as PM10. RESULTS: A comparison of the model results with the values obtained from the stations of the central emission measuring network of Rhineland-Palatinate (ZIMEN, annual report 2002) shows very good agreements. The model was not only used to calculate the annual air pollutant but also for urban planning and management. The absolute level of the air pollutant is mainly dependent on the amount of traffic in the street canyons. Therefore four different case-scenarios with varying quantity of traffic were calculated and interpreted for each street. The results of the calculation show that on the basis of the mean values for both NO2 and benzene, it is not to be expected that the limits PERSPECTIVES: Furthermore the model can be used to find the maximum tolerable numbers of cars for a street without exceeding the air pollutant thresholds.  相似文献   

7.
Several years of formaldehyde measurements at six rural European sites are compared with EMEP oxidant model calculations. The model results agree well with the measured values both with regard to average seasonal cycles as well as on an episodic day-to-day basis at all sites except for Ispra in Northern Italy. For several of the sites the agreement is better during the summer months whereas the model underestimates the concentrations in winter. The model results show that formaldehyde in summer is mainly controlled by photochemical processes such as reaction with OH, photolysis and formation through NO+peroxy radicals. Furthermore, in spite of the short chemical lifetime of formaldehyde in summer, emission pulses of volatile organic compounds (VOC) and isoprene influence formaldehyde concentrations even 48 h after the emission. These results indicate that formaldehyde is well suited for validating photochemical transport models on a long-range (European) scale. Furthermore, the reasonable agreement between model calculations and measurements for carbonyls presented here, combined with previous findings for non-methane hydrocarbons (NMHC) and evaluation of the condensed EMEP chemical mechanism against a detailed Master chemical mechanism gives encouraging support that the EMEP model describes the main ozone-forming photochemical processes in a reasonable way.  相似文献   

8.
A global atmospheric transport model is used to calculate lead concentrations in the atmosphere. The model performance is evaluated through comparisons with observations in Europe. The model results of lead concentrations in surface air were compared with measurements in East Asia. The detailed comparisons showed generally good agreement for recent decades, although systematic underestimation was found in China. Anthropogenic lead emissions in China are estimated from economic statistics to be 56 000 t yr?1, which is not small considering the economic scale of China. The underestimations suggest a hidden source of lead emissions. The emissions in Japan and Korea are derived from optimization by the model. The magnitude is about 2000 t yr?1, which is much greater than that reported by the Pollutant Release and Transfer Register in Japan and Toxics Release Inventory in Korea.  相似文献   

9.

Although the use of endosulfan to control cotton pests has declined, this insecticide still has widespread application in agriculture and can contaminate riverine systems as runoff from soil or by aerial deposition. The degradation of endosulfan in pure water at different pH values of 5, 7 and 9 and in river water from the Namoi and the Hawkesbury rivers of New South Wales (NSW), Australia, was studied in the laboratory. Endosulfan transformation into endosulfan sulfate in river water using artificial mesocosms was also investigated. The results show endosulfan is stable at pH 5, with increasing rates of disappearance at pH 7 and pH 9 by chemical hydrolysis. Incubation of endosulfan with river water at pH 8.3 resulted in the disappearance of endosulfan and the formation of endosulfan diol due to the alkaline pH as well as formation of endosulfan sulfate. Although the degradation of endosulfan by Anabaena, a blue-green alga, did not result in the transformation of endosulfan to endosulfan sulfate, we conclude that other microorganisms catalyzed the formation of the sulfate. Significant conversions of endosulfan into endosulfan sulfate were also reported from associated field studies using artificial mesocoms containing irrigation water from rivers inhabitated by micro-macro fauna. From these results, we conclude that the presence of endosulfan sulfate in river water cannot be used to distinguish contamination by runoff from soil from contamination by aerial drift or redeposition.  相似文献   

10.
The air-sea gas exchange of alpha-hexachlorocyclohexane (α-HCH) in the Canadian Arctic was estimated using a micrometeorological approach and the commonly used Whitman two-film model. Concurrent shipboard measurements of α-HCH in air at two heights (1 and 15 m) and in surface seawater were conducted during the Circumpolar Flaw Lead study in 2008. Sampling was carried out during eight events in the early summer time when open water was encountered. The micrometeorological technique employed the vertical gradient in air concentration and the wind speed to estimate the flux; results were corrected for atmospheric stability using the Monin-Obukhov stability parameter. The Whitman two-film model used the concentrations of α-HCH in surface seawater, in bulk air at 1 and 15 m above the surface, and the Henry's law constant adjusted for temperature and salinity to derive the flux. Both approaches showed that the overall net flux of α-HCH was from water to air. Mean fluxes calculated using the micrometeorological technique ranged from -3.5 to 18 ng m(-2) day(-1) (mean 7.4), compared to 3.5 to 14 ng m(-2) day(-1) (mean 7.5) using the Whitman two-film model. Flux estimates for individual events agreed in direction and within a factor of two in magnitude for six of eight events. For two events, fluxes estimated by micrometeorology were zero or negative, while fluxes estimated with the two-film model were positive, and the reasons for these discrepancies are unclear. Improvements are needed to shorten air sampling times to ensure that stationarity of meteorological conditions is not compromised over the measurement periods. The micrometeorological technique could be particularly useful to estimate fluxes of organic chemicals over water in situations where no water samples are available.  相似文献   

11.
Indiscriminate use of agrochemicals worldwide, particularly, persistent organic pollutants (POPs), is of concern. Endosulfan, a POP, is used by various developing/developed nations and is known to adversely affect the development and the hormonal profiles of humans and animals. However, little is known about the molecular players/pathways underlying the adverse effects of endosulfan. We therefore analyzed the global gene expression changes and subsequent adverse effects of endosulfan using Drosophila. We used Drosophila melanogaster keeping in view of its well annotated genome and the wealth of genetic/molecular reagents available for this model organism. We exposed third instar larvae of D. melanogaster to endosulfan (2.0 μg mL−1) for 24 h and using microarray, we identified differential expression of 256 genes in exposed organisms compared to controls. These genes are associated with cellular processes such as development, stress and immune response and metabolism. Microarray results were validated through quantitative PCR and biochemical assay on a subset of genes/proteins. Taking cues from microarray data, we analyzed the effect of endosulfan on development, emergence and survival of the organism. In exposed organisms, we observed deformities in hind-legs, reminiscent of those observed in higher organisms exposed to endosulfan. In addition, we observed delayed and/or reduced emergence in exposed organisms when compared to their respective controls. Together, our studies not only highlight the adverse effects of endosulfan on the organism but also provide an insight into the possible genetic perturbations underlying these effects, which might have potential implications to higher organisms.  相似文献   

12.
A semi-empirical mathematical model, Urban Street Model (USM), is proposed to efficiently estimate the dispersion of vehicular air pollution in cities. This model describes urban building arrangements by combining building density, building heights and the permeability of building arrangements relative to wind flow. To estimate the level of air pollution in the city of Krasnoyarsk (in Eastern Siberia), the spatial distribution of pollutant concentrations off roadways is calculated using Markov's processes in USM. The USM-predicted numerical results were compared with field measurements and with results obtained from other frequently used models, CALINE-4 and OSPM. USM consistently yielded the best results. OSPM usually overestimated pollutant concentration values. CALINE-4 consistently underestimated these values. For OSPM, the maximum differences were 160% and for CALINE-4 about 400%. Permeability and building density are necessary parameters for accurately modeling urban air pollution and influencing regulatory requirements for building planning.  相似文献   

13.
Abstract

Often, in studies evaluating the health effects of hazardous air pollutants (HAPs), researchers rely on ambient air levels to estimate exposure. Two potential data sources are modeled estimates from the U.S. Environmental Protection Agency (EPA) Assessment System for Population Exposure Nationwide (ASPEN) and ambient air pollutant measurements from monitoring networks. The goal was to conduct comparisons of modeled and monitored estimates of HAP levels in the state of Texas using traditional approaches and a previously unexploited method, concordance correlation analysis, to better inform decisions regarding agreement. Census tract-level ASPEN estimates and monitoring data for all HAPs throughout Texas, available from the EPA Air Quality System, were obtained for 1990, 1996, and 1999. Monitoring sites were mapped to census tracts using U.S. Census data. Exclusions were applied to restrict the monitored data to measurements collected using a common sampling strategy with minimal missing values over time. Comparisons were made for 28 HAPs in 38 census tracts located primarily in urban areas throughout Texas. For each pollutant and by year of assessment, modeled and monitored air pollutant annual levels were compared using standard methods (i.e., ratios of model-to-monitor annual levels). Concordance correlation analysis was also used, which assesses linearity and agreement while providing a formal method of statistical inference. Forty-eight percent of the median model-to-monitor values fell between 0.5 and 2, whereas only 17% of concordance correlation coefficients were significant and greater than 0.5. On the basis of concordance correlation analysis, the findings indicate there is poorer agreement when compared with the previously applied ad hoc methods to assess comparability between modeled and monitored levels of ambient HAPs.  相似文献   

14.
The Stockholm Convention and the Global Monitoring Plan encourage the production of monitoring data to effectively evaluate the presence of the persistent organic pollutants (POPs) in all regions, in order to identify changes in levels over time, as well as to provide information on their regional and global environmental transport. Here, we report the first step of two to investigate whether butter is a feasible matrix to screen with the purpose to reflect regional ambient atmospheric air levels of POPs. The first step described here is to generate monitoring data; the second is to investigate the relationship between the two matrixes, i.e., POP concentrations in air and butter, which will be reported in another article published in this journal. Here, the 27 organochlorine pesticides listed under the Stockholm Convention have been analyzed in 75 butter samples from Europe. The general conclusions were as follows: Total organochlorine pesticide concentration is lower in butter from northern and central Europe. The spatial gradient of 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane and hexachlorocyclohexane is increasing in the eastern region of Europe (Romania, Bulgaria, and Ukraine), dieldrin towards France, and endosulfan levels were elevated on the Azores Island in the Atlantic Ocean. One butter sample from Romania exceeded the European Maximum Residue Limit value for lindane, but the other butter pesticide levels were all below the limit values. The dataset reported here can be used for the calibration of the air–grass–dairy products model, which would support the feasibility to use butter as biomonitor for measuring POP levels in ambient air.  相似文献   

15.
Background, aims, and scope  Since toxaphene (polychlorocamphene, polychloropinene, or strobane) mixtures were applied for massive insecticide use in the 1960s to replace the use of DDT, some of their congeners have been found at high latitudes far away from the usage areas. Especially polychlorinated bornanes have demonstrated dominating congeners transported by air up to the Arctic areas. Environmental fate modeling has been applied to monitor this phenomenon using parallel zones of atmosphere around the globe as interconnected environments. These zones, shown in many meteorological maps, however, may not be the best way to configure atmospheric transport in air trajectories. The latter could also be covered by connecting a chain of simple model boxes. We aim to study this alternative approach by modeling the trajectory chain using catchment boxes of our FATEMOD model. Polychlorobornanes analyzed in biota of the Barents Sea offered one case to study this modeling alternative, while toxaphene has been and partly still is used massively at southern East Europe and around rivers flowing to the Aral Sea. Materials and methods  Pure model substances of three polychlorobornanes (toxaphene congeners P26, P50, and P62) were synthesized, their environmentally important thermal properties measured by differential scanning calorimetry, as evaluated from literature data, and their temperature dependences estimated by the QSPR programs VPLEST, WATSOLU, and TDLKOW. The evaluated property parameters were used to model their atmospheric long-range transport from toxaphene heavy usage areas in Ukraine and Aral/SyrDarja/AmuDarja region areas, through East Europe and Northern Norway (Finnmarken) to the Barents Sea. The time period used for the emission model was June 1997. Usual weather conditions in June were applied in the model, which was constructed by chaining FATEMOD model boxes of the catchment’s areas along assumed maximal air flow trajectories. Analysis of the three chlorobornanes in toxaphene mixtures function as a basis for the estimates of emission levels caused by its usage. High estimate (A) was taken from contents in a Western product chlorocamphene and low estimate (B) from mean contents in Russian polychloroterpene products to achieve modeled water concentrations. Bioaccumulation to analyzed lipid of aquatic biota at the target region was estimated by using statistical calculation for persistent organic pollutants in literature. Results  The results from model runs A and B (high and low emission estimate) for levels in sea biota were compared to analysis results of samples taken in August 1997 at Barents Sea. The model results (ng g−1 lw): 4–95 in lipid of planktovores and 7–150 in lipid of piscivores, were in fair agreement with the analysis results from August 1997: 21–31 in Themisto libellula (chatka), 26–42 in Boreocadus saida (Polar cod), and 5–27 in Gadus morhua (cod) liver. Discussion  The modeling results indicate that the application of chained simple multimedia catchment boxes on predicted trajectory is a useful method for estimation of volatile airborne persistent chemical exposures to biota in remote areas. For hazard assessment of these pollutants, their properties, especially temperature dependences, must be estimated by a reasonable accuracy. That can be achieved by using measurements in laboratory with pure model compounds and estimation of properties by thermodynamic QSPR methods. The property parameters can be validated by comparing their values at an environmental temperature range with measured or QSPR-estimated values derived by independent methods. The chained box method used for long-range air transport modeling can be more suitable than global parallel zones modeling used earlier, provided that the main airflow trajectories and properties of transported pollutants are predictable enough. Conclusions  Long-range air transport modeling of persistent, especially photo-resistant organic compounds using a chain of joint simple boxes of catchment’s environments is a feasible method to predict concentrations of pollutants at the target area. This is justified from model results compared with analytical measurements in Barents Sea biota in August 1997: three of six modeled values were high and the other three low compared to the analysis results. The order of magnitude level was similar in both modeled (planktovore and piscivore) and observed (chatka and polar cod) values of lipid samples. The obtained results were too limited to firm validation but are sufficient to justify feasibility of the method, which prompts one to perform more studies on this modeling system. Recommendations and perspectives  For assessment of the risk of environmental damages, chemical fate determination is an essential tool for chemical control, e.g., for EU following the REACH rules. The present conclusion of applicability of the chained single-box multimedia modeling can be validated by further studies using analyses of emissions and target biota in various other cases. To achieve useful results, fate models built with databases having automatic steps for most calculations and outputs accessible to all chemical control professionals are essential. Our FATEMOD program catchments at environments and compound properties listed in the database represent a feasible tool for local, regional, and, according our present test results, for global exposure predictions. As an extended use of model, emission estimates can be achieved by reversed modeling from analysis results of samples corresponding to the target area. This article is dedicated to the memory of Professor Alexander B Terentiev (who passed away in November 2006), our true friend. With his Institute of Organo-Element Compounds, Russian Academy of Science, Moscow, he was an important main organizer of the six joint Finnish–Russian seminars (every third year since 1989) on the field (‘Chemistry and Ecology of Organo-Element Compounds’). He prompted us especially to search properties and environmental fates for various polyhalogen compounds. We remember him for his friendly character and great sense of humor.  相似文献   

16.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   

17.
Evaluating sources of indoor air pollution   总被引:2,自引:0,他引:2  
Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on "sink" surfaces.  相似文献   

18.
The sensitivity of regional air quality modeling simulations to boundary conditions over Greece is investigated, for various synoptic conditions. For this purpose, a global to mesoscale model-chain is developed and applied, coupling the individual models' simulations. The global chemical transport model GEOS-CHEM, applied in a one-way nested procedure, is used to drive the regional UAM-V chemical dispersion model with time-varying lateral and top boundary conditions. The results of the coupling procedure are compared with the MINOS campaign measurements at Finokalia (Southern Greece) during the period from 1 to 16 August 2001 which is mainly characterized by an interchange of two synoptic types, High-Low and Long Wave trough.The comparison between the simulation results and the measurements reveals that the coupling procedure captures satisfactorily the range of observed CO concentrations at the southern part of Greece. The most severe deviations are observed under strongly variable atmospheric circulation, when no distinct synoptic circulation is allowed to be established in the area. Regarding O3, the highest, though underestimated, surface concentrations are simulated under Long Wave trough conditions due to the influence of the ozone inflow predicted by GEOS-CHEM at the western boundary of the innermost domain and/or under enhanced NOy emissions arriving at Finokalia from urban and ships plumes.  相似文献   

19.
Although the use of endosulfan to control cotton pests has declined, this insecticide still has widespread application in agriculture and can contaminate riverine systems as runoff from soil or by aerial deposition. The degradation of endosulfan in pure water at different pH values of 5, 7 and 9 and in river water from the Namoi and the Hawkesbury rivers of New South Wales (NSW), Australia, was studied in the laboratory. Endosulfan transformation into endosulfan sulfate in river water using artificial mesocosms was also investigated. The results show endosulfan is stable at pH 5, with increasing rates of disappearance at pH 7 and pH 9 by chemical hydrolysis. Incubation of endosulfan with river water at pH 8.3 resulted in the disappearance of endosulfan and the formation of endosulfan diol due to the alkaline pH as well as formation of endosulfan sulfate. Although the degradation of endosulfan by Anabaena, a blue-green alga, did not result in the transformation of endosulfan to endosulfan sulfate, we conclude that other microorganisms catalyzed the formation of the sulfate. Significant conversions of endosulfan into endosulfan sulfate were also reported from associated field studies using artificial mesocoms containing irrigation water from rivers inhabitated by micro-macro fauna. From these results, we conclude that the presence of endosulfan sulfate in river water cannot be used to distinguish contamination by runoff from soil from contamination by aerial drift or redeposition.  相似文献   

20.
Kumar M  Philip L 《Chemosphere》2006,62(7):1064-1077
Adsorption and desorption characteristics of endosulfan in four Indian soils were studied extensively. The soils used were clayey soil (CL--lean clay with sand), red soil (GM--silty gravel with sand), sandy soil (SM--silty sand with gravel) and composted soil (PT--peat) as per ASTM (American Society for Testing and Materials) standards. Adsorption and desorption rates were calculated from kinetic studies. These values varied for alpha and beta endosulfan depending on the soil type. Maximum specific adsorption capacities (qmax) for different soils were calculated by Langmuir model. The values varied from 0.1 to 0.45 mg g(-1) for alpha endosulfan and 0.0942-0.2722 mg g(-1) for beta endosulfan. Maximum adsorption took place in clay soil followed by composted soil and red soil. Adsorptions of alpha and beta endosulfan were negligible in sand. The binding characteristics of various functional groups were calculated using Scatchard plot. Effect of functional groups was more predominant in clayey soil. Organic matter also played a significant role in adsorption and desorption of endosulfan. Endosulfan adsorption decreased drastically in clay soil when the pH was reduced. Desorption was higher at both acidic and alkaline pH ranges compared to neutral pH. Results indicated that alpha endosulfan is more mobile compared to beta endosulfan and mobility of endosulfan is maximum in sandy soil followed by red soil. It can be inferred that crystal lattice of the clay soil plays a significant role in endosulfan adsorption and desorption. Immobilization of endosulfan is more advisable in clay soil whereas biological and or chemical process can be applied effectively for the remediation of other soil types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号