首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distributions of nanoparticles (below 300 nm in diameter) change rapidly after emission from the tail pipe of a moving vehicle due to the influence of transformation processes. Information on this time scale is important for modelling of nanoparticle dispersion but is unknown because the sampling frequencies of available instruments are unable to capture these rapid processes. In this study, a fast response differential mobility spectrometer (Cambustion Instruments DMS500), originally designed to measure particle number distributions (PNDs) and concentrations in engine exhaust emissions, was deployed to measure particles in the 5–1000 nm size range at a sampling frequency of 10 Hz. This article presents results of two separate studies; one, measurements along the roadside in a Cambridge (UK) street canyon and, two, measurements at a fixed position (20 cm above road level), centrally, in the wake of a single moving diesel-engined car. The aims of the first measurements were to test the suitability and recommend optimum operating conditions of the DMS500 for ambient measurements. The aim of the second study was to investigate the time scale over which competing influences of dilution and transformation processes (nucleation, condensation and coagulation) affect the PNDs in the wake of a moving car. Results suggested that the effect of transformation processes was nearly complete within about 1 s after emission due to rapid dilution in the vehicle wake. Furthermore, roadside measurements in a street canyon showed that the time for traffic emissions to reach the roadside in calm wind conditions was about 45 ± 6 s. These observations suggest the hypothesis that the effects of transformation processes are generally complete by the time particles are observed at roadside and the total particle numbers can then be assumed as conserved. A corollary of this hypothesis is that complex transformation processes can be ignored when modelling the behaviour of nanoparticles in street canyons once the very near-exhaust processes are complete.  相似文献   

2.
Traffic-induced turbulence plays a dominant role in the dispersion of pollutants near highways. The formulations for velocity deficit and turbulence in vehicle wakes, developed from theoretical and physical modeling studies of Eskridge and his colleagues at US EPA about 20 years ago, are discussed. The vehicle wake parameterizations incorporated in ROADWAY-2, a near-highway pollutant dispersion model, and its evaluation results are described. The first field measurements of velocities and turbulence in the vehicle wake, using a towed array of 3-D sonic anemometers, are analyzed, and the results are presented and discussed. Specific recommendations are made for additional work in field measurements, laboratory studies, and mathematical model development and evaluation.  相似文献   

3.
The likely health and environmental implications associated with atmospheric nanoparticles have prompted considerable recent research activity. Knowledge of the characteristics of these particles has improved considerably due to an ever growing interest in the scientific community, though not yet sufficient to enable regulatory decision making on a particle number basis. This review synthesizes the existing knowledge of nanoparticles in the urban atmosphere, highlights recent advances in our understanding and discusses research priorities and emerging aspects of the subject. The article begins by describing the characteristics of the particles and in doing so treats their formation, chemical composition and number concentrations, as well as the role of removal mechanisms of various kinds. This is followed by an overview of emerging classes of nanoparticles (i.e. manufactured and bio-fuel derived), together with a brief discussion of other sources. The subsequent section provides a comprehensive review of the working principles, capabilities and limitations of the main classes of advanced instrumentation that are currently deployed to measure number and size distributions of nanoparticles in the atmosphere. A further section focuses on the dispersion modelling of nanoparticles and associated challenges. Recent toxicological and epidemiological studies are reviewed so as to highlight both current trends and the research needs relating to exposure to particles and the associated health implications. The review then addresses regulatory concerns by providing an historical perspective of recent developments together with the associated challenges involved in the control of airborne nanoparticle concentrations. The article concludes with a critical discussion of the topic areas covered.  相似文献   

4.
Vehicular traffic contributes significantly to the aerosol number concentrations at the local scale by emitting primary soot particles and forming secondary nucleated nanoparticles. Because of their potential health effects, more attention is paid to the traffic induced aerosol number distributions.The aim of this work is to explain the phenomenology leading to the formation and the evolution of the aerosol number distributions in the vicinity of a vehicle exhaust using numerical modelling. The emissions are representative of those of a light-duty diesel truck without a diesel particle filter. The atmospheric flow is modelled with a computational fluid dynamics (CFD) code to describe the dispersion of pollutants at the local scale. The CFD code, coupled to a modal aerosol model (MAM) describing the aerosol dynamics, is used to model the tailpipe plume of a vehicle with emissions corresponding to urban driving conditions. On the basis of available measurements in Schauer et al. (1999), three surrogate species are chosen to treat the semi-volatile organic compounds in the emissions.The model simulates the formation of the aerosol distribution in the exhaust plume of a vehicle as follows. After emission to the atmosphere, particles are formed by nucleation of sulphuric acid and water vapour depending strongly on the thermodynamic state of the atmosphere and on the dilution conditions. The semi-volatile organic compounds are critical for the rapid growth of nanoparticles through condensation. The semi-volatile organic compounds are also important for the evolution of primary soot particles and can contribute substantially to their chemical composition.The most influential parameters for particle formation are the sulphur fuel content, the semi-volatile organic emissions and also the mass and initial diameter of the soot particles emitted. The model is able to take into account the complex competition between nucleation, condensation and dilution, as well as the interactions among the different aerosol modes. This type of model is a useful tool to better understand the dynamics leading to the formation of traffic induced aerosol distributions. However, some key issues such as the turbulence in the exhaust plume and in the wake of the car, the magnitude and chemical composition of semi-volatile organic emissions and the possible nucleation of organic species need to be investigated further to improve our understanding of ultrafine particle formation.  相似文献   

5.
ABSTRACT

Comparison between particle size distributions recorded directly at the tailpipes of both diesel and gasoline vehicles and measurements made using a conventional dilution tunnel reveals two problems incurred when using the latter method for studying particle number emissions. One is the potential for particulate matter (PM) artifacts originating from hydrocarbon material stored in the transfer hose connecting the tailpipe to the dilution tunnel, and the other is the particle coagulation (as well as condensation and chemical changes) that occurs during the transport. Both are potentially generic to current PM emissions measurement practices. The artifacts typically occur as a nanoparticle mode (10–30 nm) that is 2–4 orders of magnitude larger than what is present in the vehicle exhaust and can easily be mistaken for a similar mode that can arise from the nucleation of hydrocarbon or SO4 2-components in the exhaust under appropriate dilution rates. Wind tunnel measurements are in good agreement with those made directly from the tailpipe and substantiate the potential for artifacts. They reveal PM levels for the recent model port fuel injection (PFI) gasoline vehicles tested that are small compared with the ambient background particle level during steady-state driving. The PM emissions recorded for drive cycles such as the Federal Test Procedure (FTP) and US06 occur primarily during acceleration, as has been previously noted. Light-duty diesel vehicle emissions normally exhibit a single lognormal mode centered between 55 and 80 nm, although a nonartifact nanoparticle mode in some cases appears at a 70-mph cruise up a grade.  相似文献   

6.
Comparison between particle size distributions recorded directly at the tailpipes of both diesel and gasoline vehicles and measurements made using a conventional dilution tunnel reveals two problems incurred when using the latter method for studying particle number emissions. One is the potential for particulate matter (PM) artifacts originating from hydrocarbon material stored in the transfer hose connecting the tailpipe to the dilution tunnel, and the other is the particle coagulation (as well as condensation and chemical changes) that occurs during the transport. Both are potentially generic to current PM emissions measurement practices. The artifacts typically occur as a nanoparticle mode (10-30 nm) that is 2-4 orders of magnitude larger than what is present in the vehicle exhaust and can easily be mistaken for a similar mode that can arise from the nucleation of hydrocarbon or SO4(2-) components in the exhaust under appropriate dilution rates. Wind tunnel measurements are in good agreement with those made directly from the tailpipe and substantiate the potential for artifacts. They reveal PM levels for the recent model port fuel injection (PFI) gasoline vehicles tested that are small compared with the ambient background particle level during steady-state driving. The PM emissions recorded for drive cycles such as the Federal Test Procedure (FTP) and US06 occur primarily during acceleration, as has been previously noted. Light-duty diesel vehicle emissions normally exhibit a single lognormal mode centered between 55 and 80 nm, although a nonartifact nanoparticle mode in some cases appears at a 70-mph cruise up a grade.  相似文献   

7.
A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric chemistry.  相似文献   

8.
The wake of a moving vehicle was simulated using a wind tunnel with a moving floor. The vehicle models, both block-shaped and ‘true’ scale models of actual automobiles, were held in a fixed position while the floor moved at the upstream air speed. This simulates an automobile travelling on a straight highway in still ambient air.Vertical and lateral profiles of mean and fluctuating velocities and mean tracer concentration were obtained. Profiles were taken at distances of 15–60 model heights downstream. Two exhaust source positions were used: at the center of the rear of the vehicle and on the side just behind the rear wheel. It was found that the models of true vehicles induce a pair of vortices in the wake that modify the velocity and concentration patterns in a minor way from that of the block-shaped vehicle.  相似文献   

9.
Emissions of passenger cars and light-duty vehicles with complex exhaust gas after-treatment are difficult to predict, especially if the prediction is only based on kinematic parameters without vehicle-specific data. A new method for modelling fleet emission factors based on testbench data is presented. It has been used for modern passenger cars and light-duty vehicles (EURO-2 and -3) in the new version 2.1 of the German-Austrian-Swiss Handbook Emission Factors for Road Transport (HBEFA). The new method, not relying on vehicle-specific data, avoids decomposing the measured real-world driving behaviour and all associated uncertainties. Emission factors can be predicted for any given driving pattern which is characterised through kinematic parameters or representative time series of vehicle speed. The methodology determines the linear combination of measured driving patterns that is most representative for the driving pattern whose emissions are to be predicted. The approach is illustrated using testbench real-world measurements of 44 passenger cars of technology stages EURO-2 and -3.  相似文献   

10.
Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.  相似文献   

11.
Recent theoretical and experimental investigations Indicate that turbulent diffusion behind moving vehicles Is Influenced by the speed of the vehicle. Vertical wake induced turbulent diffusion, explicitly treated in the numerical ROADWAY model, is proportional to the square of the wind speed relative to the moving vehicle. Hence, the model predictions of turbulent mixing and pollutant concentrations on and downwind of a roadway are dependent upon the traffic speed. It Is expected from theoretical considerations that the effect of vehicle speed on pollutant concentrations will be more significant during stable atmospheric conditions, because in neutral and unstable conditions the vehicle-wake turbulence is quickly masked by the ambient turbulence. In this study, experimental data are utilized to evaluate the theoretical predictions of the effects of traffic speed on the ambient pollutant concentrations. The effects of vehicle speed upon ambient concentrations are investigated through wind tunnel experiments and field studies that used dual tracers. Consistent with predictions of the ROADWAY model, data obtained near the Long Island Expressway indicate that the influence of traffic speed on the ambient pollutant concentrations Is not significant during unstable and neutral conditions. The Long Island experiment did not provide sufficient field data to assess the model predictions of the traffic speed effect during stable atmospheric conditions.  相似文献   

12.
ABSTRACT

A tunable infrared laser differential absorption spectrometer (TILDAS) was used to remotely sense the nitric oxide (NO) emissions from 1,473 on-road vehicles. The real-world measurement precision of this instrument in the limit of low NO concentration is 5 ppm of the vehicle exhaust, which corresponds to a 3o detection limit of 15 ppm. Our analysis of the distribution of negative concentration measurements produced during this experiment supports this claim, showing that the instrumental noise for this set of measurements was at most 8 ppm in the limit of low NO concentration. The high sensitivity of this instrument allowed us to measure the NO emissions of even the cleanest vehicles. The measured vehicle fleet NO emissions closely fit a gamma distribution with 10% of the fleet contributing about 50% of the total fleet emissions. Newer vehicles had lower NO emissions than older ones, but high NO emitters were found in every vehicle age cohort. On a vehicle-by-vehicle basis, NO emissions correlated very weakly with vehicle velocity, acceleration, power per unit mass, carbon monoxide (CO) emissions, and hydrocarbon (HC) emissions. High NO emitting vehicles could not be identified by remote sensing of CO or HC emissions and vice versa. When we compared the NO emissions for 117 vehicles measured more than one time, about half of the high NO emitters were found to be very consistent, while the other half varied significantly.  相似文献   

13.
ABSTRACT

The paper provides a summary of accomplished and ongoing activities in the field of motor vehicle emission modeling in Europe. These activities have led to the development of a system of methods and conesponding computer models that address all the issues related to motor vehicle emissions that are of interest to policy-makers, institutions, and the automotive and oil industries. The Coordination of Information on Air Emissions/Computer Program to Calculate Emissions from Road Traffic (CORLNAIR/COPERT) methodology for the estimation of emissions from road vehicles is presented and compared with other models. A COPERT-based approach for microscale traffic emission estimation, with direct application in regional and urban emission inventories, is outlined, and relevant case studies are briefly discussed. The FOREMOVE model, developed for forecasts of motor vehicle emissions, is presented, together with some results from its application in the European Auto/Oil program. Particular attention is given to modeling the deterioration of in-use vehicles. Finally, the major areas of further research in the field of vehicle emissions in Europe are indicated.  相似文献   

14.
Increasing use of nanoparticles in daily products is of great concern today, especially when their positive and negative impact on environment is not known. Hence, in current research, we have studied the impact of silver nanoparticle (AgNPs) and silver nitrate (AgNO3) application on seed germination, root, and shoot length of castor bean, Ricinus communis L. plant. Silver nanoparticles had no significant effects on seedling growth even at higher concentration of 4,000 mg L?1, while the silver in bulk form as AgNO3 applied on the castor bean seeds inhibited the seed germination. Silver uptake in seedlings of the castor seeds on treatment with both the forms of silver was confirmed through atomic absorption spectroscopy studies. The silver nanoparticle and silver nitrate application to castor seeds also caused an enhanced enzymatic activity of ROS enzymes and phenolic content in castor seedlings. High-performance liquid chromatography analysis of individual phenols indicated enhanced content of parahydroxy benzoic acid. These kinds of studies are of great interest in order to unveil the movement and accumulation of nanoparticles in plant tissues for assessing future applications in the field or laboratory.  相似文献   

15.
ABSTRACT

In August 1995, measurements of CO, NOx, speciated nonmethane hydrocarbons (NMHC), and CO2 were made in Vancouver's Cassiar Connector, a 730-m-long level-grade highway traffic tunnel. Two characteristics of the Vancouver setting are the presence of many propane vehicles and a mandatory inspection and maintenance (I/M) program. Although the driving conditions and vehicle fleets are otherwise outwardly similar to those of recent Tuscarora-tunnel studies, CO/NO ratios at the Cassiar Connector are significantly lower than those measured at Tuscarora. The Cassiar measurements are consistent with the MOBILE5A mobile emissions model predictions. The Canadian version of MOBILE5A—known as MOBILE5C—gives nearly identical results, indicating that differences in Canadian and U.S. emission standards cannot explain differences between Cassiar and U.S. tunnels. Considering the modeling results as well as measured ethene/acetylene ratios indicative of noncatalyst vehicles, it appears that vehicle deterioration remains the major issue in in-use vehicle emissions—even in Vancouver, where there is a mandatory loaded-mode I/M program.  相似文献   

16.
An updated assessment of fine particle emissions from light- and heavy-duty vehicles is needed due to recent changes to the composition of gasoline and diesel fuel, more stringent emission standards applying to new vehicles sold in the 1990s, and the adoption of a new ambient air quality standard for fine particulate matter (PM2.5) in the United States. This paper reports the measurement of emissions from vehicles in a northern California roadway tunnel during summer 1997. Separate measurements were made of uphill traffic in two tunnel bores: one bore carried both light-duty vehicles and heavy-duty diesel trucks, and the second bore was reserved for light-duty vehicles. Ninety-eight percent of the light-duty vehicles were gasoline-powered. In the tunnel, heavy-duty diesel trucks emitted 24, 37, and 21 times more fine particle, black carbon, and sulfate mass per unit mass of fuel burned than light-duty vehicles. Heavy-duty diesel trucks also emitted 15–20 times the number of particles per unit mass of fuel burned compared to light-duty vehicles. Fine particle emissions from both vehicle classes were composed mostly of carbon; diesel-derived particulate matter contained more black carbon (51±11% of PM2.5 mass) than did light-duty fine particle emissions (33±4%). Sulfate comprised only 2% of total fine particle emissions for both vehicle classes. Sulfate emissions measured in this study for heavy-duty diesel trucks are significantly lower than values reported in earlier studies conducted before the introduction of low-sulfur diesel fuel. This study suggests that heavy-duty diesel vehicles in California are responsible for nearly half of oxides of nitrogen emissions and greater than three-quarters of exhaust fine particle emissions from on-road motor vehicles.  相似文献   

17.
The Coordinating Research Council (CRC) held its tenth workshop in March 2000, focusing on results from the most recent real-world vehicle emissions research. In this paper, we summarize the presentations from researchers who are engaged in improving our understanding of the contribution of mobile sources to emission inventories. Participants in the workshop discussed efforts to improve mobile source emission models and emission inventories, results from gas- and particle-phase emissions studies from spark-ignition and diesel-powered vehicles, new methods for measuring mobile source emissions, improvements in vehicle emission control systems (ECSs), and evaluation of motor vehicle inspection/maintenance (I/M) programs, as well as topics for future research.  相似文献   

18.
Biomagnetic monitoring of industry-derived particulate pollution   总被引:2,自引:0,他引:2  
Clear association exists between ambient PM10 concentrations and adverse health outcomes. However, determination of the strength of associations between exposure and illness is limited by low spatial-resolution of particulate concentration measurements. Conventional fixed monitoring stations provide high temporal-resolution data, but cannot capture fine-scale spatial variations. Here we examine the utility of biomagnetic monitoring for spatial mapping of PM10 concentrations around a major industrial site. We combine leaf magnetic measurements with co-located PM10 measurements to achieve inter-calibration. Comparison of the leaf-calculated and measured PM10 concentrations with PM10 predictions from a widely-used atmospheric dispersion model indicates that modelling of stack emissions alone substantially under-predicts ambient PM10 concentrations in parts of the study area. Some of this discrepancy might be attributable to fugitive emissions from the industrial site. The composition of the magnetic particulates from vehicle and industry-derived sources differ, indicating the potential of magnetic techniques for source attribution.  相似文献   

19.
This paper discusses results from a vehicular emissions research study of over 350 vehicles conducted in three communities in Los Angeles, CA, in 2010 using vehicle chase measurements. The study explores the real-world emission behavior of light-duty gasoline vehicles, characterizes real-world super-emitters in the different regions, and investigates the relationship of on-road vehicle emissions with the socioeconomic status (SES) of the region. The study found that in comparison to a 2007 earlier study in a neighboring community, vehicle emissions for all measured pollutants had experienced a significant reduction over the years, with oxides of nitrogen (NOX) and black carbon (BC) emissions showing the largest reductions. Mean emission factors of the sampled vehicles in low-SES communities were roughly 2–3 times higher for NOX, BC, carbon monoxide, and ultrafine particles, and 4–11 times greater for fine particulate matter (PM2.5) than for vehicles in the high-SES neighborhood. Further analysis indicated that the emission factors of vehicles within a technology group were also higher in low-SES communities compared to similar vehicles in the high-SES community, suggesting that vehicle age alone did not explain the higher vehicular emission in low-SES communities.

Evaluation of the emission factor distribution found that emissions from 12% of the sampled vehicles were greater than five times the mean from all of the sampled fleet, and these vehicles were consequently categorized as “real-world super-emitters.” Low-SES communities had approximately twice as many super-emitters for most of the pollutants as compared to the high-SES community. Vehicle emissions calculated using model-year-specific average fuel consumption assumptions suggested that approximately 5% of the sampled vehicles accounted for nearly half of the total CO, PM2.5, and UFP emissions, and 15% of the vehicles were responsible for more than half of the total NOX and BC emissions from the vehicles sampled during the study.

Implications: This study evaluated the real-world emission behavior and super-emitter distribution of light-duty gasoline vehicles in California, and investigated the relationship of on-road vehicle emissions with local socioeconomic conditions. The study observed a significant reduction in vehicle emissions for all measured pollutants when compared to an earlier study in Wilmington, CA, and found a higher prevalence of high-emitting vehicles in low-socioeconomic-status communities. As overall fleet emissions decrease from stringent vehicle emission regulations, a small fraction of the fleet may contribute to a disproportionate share of the overall on-road vehicle emissions. Therefore, this work will have important implications for improving air quality and public health, especially in low-SES communities.  相似文献   


20.
Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO2), oxides of nitrogen (NOX), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NOX/bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NOX/kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NOX threshold was derived from measurements where after-treatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger sample of in-use HD vehicles.

Implications: Regulatory agencies, civil society, and the public at large have a growing interest in vehicle emission compliance in the real world. Leveraging roadside plume measurements to identify vehicles with malfunctioning emission control systems is emerging as a viable new and useful method to assess in-use performance. This work proposes fuel-based emission factor thresholds for PM and NOx that signify exceedances of emission standards on a work-specific basis by analyzing real-time emissions in the laboratory. These thresholds could be used to prescreen vehicles before roadside enforcement inspection or other inquiry, enhance and further develop emission inventories, and potentially develop new requirements for heavy-duty inspection and maintenance (I/M) programs, including but not limited to identifying vehicles for further testing.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号