首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
青岛近海秋季生物气溶胶分布特征   总被引:6,自引:0,他引:6  
生物气溶胶是大气气溶胶的重要组成部分,对生物气溶胶的分布特征进行分析对于了解其对人体健康和大气环境的影响具有重要作用.于2007年9-10月运用安德森6级生物粒子采样器在青岛近海连续采集生物气溶胶样品,探讨陆源和海源细菌及真菌的浓度和粒径分布特征.结果表明,青岛近海生物气溶胶中陆源细菌浓度高于海源细菌,而陆源真菌浓度低于海源真菌,海源菌总数高于陆源菌;陆源和海源细菌及真菌浓度分布表现为上午﹥下午﹥中午.9-10月陆源和海源细菌主要分布在大于2.1 (m的粒子中,占总数的80.0%以上,呈偏态分布;9月陆源和海源真菌主要分布在2.1~7.0 (m的粒子中,10月陆源和海源真菌主要分布在1.1~4.7 (m的粒子中,呈对数正态分布.总体而言,青岛近海生物气溶胶受到陆地与海洋的双重影响,海洋影响更为显著.  相似文献   

2.
大气气溶胶研究新动向   总被引:45,自引:0,他引:45  
本文概述了近年大气气溶胶研究的四个主要方面:大气气溶胶的表征、大气化学过程与气候变化、健康效应等的概况.阐明了当今大气气溶胶研究的趋向,主要着重于PM_(10)和PM_(2.5)细颗粒(可吸入颗粒物或二次颗粒物)的物理化学特性与环境行为、生态效应,更重视气溶胶的非均相化学反应过程;其研究范围,从平流层向对流层发展,并密切结合气候变化、健康影响等有关的一些实际问题,进行深层次的综合性研究.大气气溶胶化学已成为当今大气化学研究最前沿的领域.  相似文献   

3.
氮是大气气溶胶的重要组成部分.气溶胶中的氮组分参与大气中的光化学反应,进而改变大气组成,影响气候变化与人类健康.同时,大气中过量的颗粒氮改变了氮素的自然循环,当它们沉降到地表时对陆地和水生生态系统产生深远的影响.本文综述了近年来气溶胶氮组分的研究进展,按其化学形态分别阐述了气溶胶中无机氮和有机氮的来源及其相关大气化学过程等,同时探讨了气溶胶中氮的同位素特征,指出该研究领域的薄弱环节并对其研究前景进行了展望.  相似文献   

4.
青藏日喀则大气颗粒物水溶性无机离子粒径分布特征初探   总被引:1,自引:0,他引:1  
正大气颗粒物在环境效应、气候变化和人群健康方面起到的重要作用,很大程度上是由其中的大气颗粒物粒径及其化学成分决定的.水溶性无机离子及其中的硝酸盐、硫酸盐、铵盐二次粒子是大气颗粒物尤其是细粒子的主要组成成分[1].研究水溶性无机离子组成与粒径分布对于了解大气颗粒物的物理化学性质、来源及形成机理具有重要的意义[2].监测高原地区的大气环境变化,是认识大气污染物长距离传输的重要途径,可以获得全球有关重大环境事件的信息,为研究人类发展与自然环境的关系提供重要的科学依据[3].本研究在青藏日喀则地区进行大气颗粒物的分级采样结合离子色谱仪测定其中主要水溶性离子的浓度,首次获得水溶性离子的组成和粒径分布特征,为后续研究工作开展奠定基础,同时为了解青藏高原以及北半球洁净地区大气气溶胶的特征提供基础数据.  相似文献   

5.
土壤元素化学计量特征在塑造微生物多样性方面起着至关重要的作用,而元素化学计量受到土壤含水量的影响。为探究不同土壤水分条件下,有机碳(OC)、全氮(TN)、全磷(TP)及其元素化学计量特征(C?N、C?P和N?P)如何影响土壤微生物多样性,在浙江省20 hm2亚热带森林动态监测样地内共采集1 287份土壤样品。利用Illumina高通量测序技术测定了土壤细菌和真菌的群落组成,并结合土壤理化性质,分析了不同土壤水分下元素和元素化学计量与微生物群落的关系。结果表明,土壤水分能改变元素化学计量特征,进而塑造细菌和真菌群落的多样性。其中,(1)土壤水分显著影响微生物群落的α多样性。相较于高土壤水分,在低土壤水分下,细菌和真菌群落的α多样性分别显著提高了0.830%和2.62%。(2)细菌和真菌的主要门类对土壤水分表现出差异化响应。相较于低土壤水分,高土壤水分显著提高了细菌5个门类和真菌2个门类的相对丰度;并且显著降低了细菌7个门类和真菌2个门类的相对丰度。(3)土壤元素含量和元素化学计量特征与土壤水分呈显著正相关关系。(4)元素化学计量C?N、C?P和N?P与微生物多样性呈...  相似文献   

6.
香河地区大气气溶胶中水溶性离子观测及分析   总被引:1,自引:0,他引:1  
大气气溶胶是大气中数量巨大、成分复杂、性质多样、危害最大的一种污染物.水溶性无机离子是大气气溶胶中的重要组成部分,它不仅直接影响大气沉降的酸度和云、雾的形成,还能引起辐射强迫作用,进而导致地气系统能量平衡变化,间接影响全球气候.近年来,对大气气溶胶中可溶性离子的研究受到越来越多的关注.  相似文献   

7.
含碳气溶胶是大气气溶胶中的污染物,包括黑碳(EC)和有机碳(OC)。根据OC的溶解性,可将其分为水溶性有机碳(WSOC)和甲醇溶解有机碳(MSOC)。尼泊尔是南亚的发展中国家,该地区的含碳气溶胶可以长距离传输进入青藏高原,进而影响喜马拉雅大气组分和气候。因此,研究尼泊尔地区的一次源含碳气溶胶对保护喜马拉雅的环境具有重要的意义。另外,准确获知含碳气溶胶化学组分的排放因子(EF),明确污染物排放因子的影响因素,可为污染物减排提供理论依据。然而,目前对于尼泊尔一次源排放的含碳气溶胶研究有限,尤其是WSOC和MSOC的排放特征报道仍为空白。基于此,在尼泊尔的首都加德满都,实地测定生物质燃烧和机动车尾气排放的含碳气溶胶排放因子,分析了排放因子的影响因素。结果表明,泥炉排放的EFOC (53±7.8) g·kg-1和EFWSOC (46±9.8) g·kg-1高于铁炉和砖炉的排放因子1-2个数量级。此外,泥炉排放的EFEC (5.5±0.4) g·kg-1也高于铁炉和...  相似文献   

8.
1985年11月18日至22日在美国新墨西哥州阿尔伯格尔基(Albuquerque)举行了美国气溶胶研究协会(America Association for Aerosol Research)1985年年会,会议共提出论文200余篇。 从这次会议可以看到,气溶胶的研究既是基础科学又是应用科学和技术,在人们生活和军事国防上都有广阔的应用范围。例如,工业粉末和尘浆的制造和治理、环境保护、大气物理性质的研究、核爆炸的影响、化学战争的武器制造和防御,超清洁气体的制备和检测、大气气溶胶对太阳能传输影响、大气气溶胶对人体和生物的影响等等,因此,及早注意气溶胶的研究是十分必要的。  相似文献   

9.
环境样品的X射线荧光分析   总被引:3,自引:0,他引:3  
本文主要介绍大气、水体、土壤和生物样品的X射线荧光分析,并讨论气溶胶样品的采集、薄膜标准的制备、水样的预富集方法,如共沉淀、离子交换、萃取和蒸发,土壤及沉积物的粉末压片、熔融、化学处理等制样方法,以及生物样品中痕量元素的分析。  相似文献   

10.
典型背景点降水化学组份的分析   总被引:7,自引:0,他引:7  
刘嘉麒  洪峪森 《环境化学》1996,15(5):391-398
全球背景降水划分为海洋型,内陆型和海洋与内陆相间型三种,以太平洋的Amsterdam和大西洋的S;Georges为例,研究海洋型背景降水受海洋大气环流控制,化学组分来源于海洋气溶胶。分析了澳大利亚Katherine海洋与内陆相间型,背景降水化学组份来主要来源于海洋气溶胶和内陆大气污染传输两者的相关性。  相似文献   

11.
• Bioaerosols are produced in the process of wastewater biological treatment. • The concentration of bioaerosol indoor is higher than outdoor. • Bioaerosols contain large amounts of potentially pathogenic biomass and chemicals. • Inhalation is the main route of exposure of bioaerosol. • Both the workers and the surrounding residents will be affected by the bioaerosol. Bioaerosols are defined as airborne particles (0.05–100 mm in size) of biological origin. They are considered potentially harmful to human health as they can contain pathogens such as bacteria, fungi, and viruses. This review summarizes the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bioaerosols. The concentration and size distribution of WWTP bioaerosols; their major emission sources, composition, and health risks; and considerations for future research are discussed. The major themes and findings in the literature are as follows: the major emission sources of WWTP bioaerosols include screen rooms, sludge-dewatering rooms, and aeration tanks; the bioaerosol concentrations in screen and sludge-dewatering rooms are higher than those outdoors. WWTP bioaerosols contain a variety of potentially pathogenic bacteria, fungi, antibiotic resistance genes, viruses, endotoxins, and toxic metal(loid)s. These potentially pathogenic substances spread with the bioaerosols, thereby posing health risks to workers and residents in and around the WWTP. Inhalation has been identified as the main exposure route, and children are at a higher risk of this than adults. Future studies should identify emerging contaminants, establish health risk assessments, and develop prevention and control systems.  相似文献   

12.
• Emission of microbe from local environments is a main source of bioaerosols. • Regional transport is another important source of the bioaerosols. • There are many factors affecting the diffusion and transport of bioaerosols. • Source identification method uncovers the contribution of sources of bioaerosols. Recent pandemic outbreak of the corona-virus disease 2019 (COVID-19) has raised widespread concerns about the importance of the bioaerosols. They are atmospheric aerosol particles of biological origins, mainly including bacteria, fungi, viruses, pollen, and cell debris. Bioaerosols can exert a substantial impact on ecosystems, climate change, air quality, and public health. Here, we review several relevant topics on bioaerosols, including sampling and detection techniques, characterization, effects on health and air quality, and control methods. However, very few studies have focused on the source apportionment and transport of bioaerosols. The knowledge of the sources and transport pathways of bioaerosols is essential for a comprehensive understanding of the role microorganisms play in the atmosphere and control the spread of epidemic diseases associated with them. Therefore, this review comprehensively summarizes the up to date progress on the source characteristics, source identification, and diffusion and transport process of bioaerosols. We intercompare three types of diffusion and transport models, with a special emphasis on a widely used mathematical model. This review also highlights the main factors affecting the source emission and transport process, such as biogeographic regions, land-use types, and environmental factors. Finally, this review outlines future perspectives on bioaerosols.  相似文献   

13.
•ZnO/Perlite inactivated 72% of bioaerosols in continuous gas phase. •TiO2 triggered the highest level of cytotoxicity with 95% dead cells onto Poraver. •Inactivation mechanism occurred by membrane damage, morphological changes and lysis. •ZnO/Poraver showed null inactivation of bioaerosols. •Catalysts losses at the outlet of the photoreactor for all systems were negligible. Bioaerosols are airborne microorganisms that cause infectious sickness, respiratory and chronic health issues. They have become a latent threat, particularly in indoor environment. Photocatalysis is a promising process to inactivate completely bioaerosols from air. However, in systems treating a continuous air flow, catalysts can be partially lost in the gaseous effluent. To avoid such phenomenon, supporting materials can be used to fix catalysts. In the present work, four photocatalytic systems using Perlite or Poraver glass beads impregnated with ZnO or TiO2 were tested. The inactivation mechanism of bioaerosols and the cytotoxic effect of the catalysts to bioaerosols were studied. The plug flow photocatalytic reactor treated a bioaerosol flow of 460×1 06 cells/m3air with a residence time of 5.7 s. Flow Cytometry (FC) was used to quantify and characterize bioaerosols in terms of dead, injured and live cells. The most efficient system was ZnO/Perlite with 72% inactivation of bioaerosols, maintaining such inactivation during 7.5 h due to the higher water retention capacity of Perlite (2.8 mL/gPerlite) in comparison with Poraver (1.5 mL/gPerlite). However, a global balance showed that TiO2/Poraver system triggered the highest level of cytotoxicity to bioaerosols retained on the support after 96 h with 95% of dead cells. SEM and FC analyses showed that the mechanism of inactivation with ZnO was based on membrane damage, morphological cell changes and cell lysis; whereas only membrane damage and cell lysis were involved with TiO2. Overall, results highlighted that photocatalytic technologies can completely inactivate bioaerosols in indoor environments.  相似文献   

14.
• TSIBF was composed of ABRS, FRS and HBRS. • THIBF can effectively remove various odors, VOCs and bioaerosols. • Different reaction segments in TSIBF can remove different types of odors and VOCs. • TSIBF can reduce the emission of bioaerosols through enhanced interception. A novel three-stage integrated biofilter (TSIBF) composed of acidophilic bacteria reaction segment (ABRS), fungal reaction segment (FRS) and heterotrophic bacteria reaction segment (HBRS) was constructed for the treatment of odors and volatile organic compounds (VOCs)from municipal solid waste (MSW) comprehensive treatment plants. The performance, counts of predominant microorganisms, and bioaerosol emissions of a full-scale TSIBF system were studied. High and stable removal efficiencies of hydrogen sulfide, ammonia and VOCs could be achieved with the TSIBF system, and the emissions of culturable heterotrophic bacteria, fungi and acidophilic sulfur bacteria were relatively low. The removal efficiencies of different odors and VOCs, emissions of culturable microorganisms, and types of predominant microorganisms were different in the ABRS, FRS and HBRS due to the differences in reaction conditions and mass transfer in each segment. The emissions of bioaerosols from the TSIBF depended on the capture of microorganisms and their volatilization from the packing. The rational segmentation, filling of high-density packings and the accumulation of the predominant functional microorganisms in each segment enhanced the capture effect of the bioaerosols, thus reducing the emissions of microorganisms from the bioreactor.  相似文献   

15.
● The airborne bacteria in landfills were 4–50 times higher than fungi. ● Bioaerosols released from the working area would pose risk to on-site workers. ● The safe distance for the working area should be set as 80 m. Landfills are widely complained about due to the long-term odor and landfill gas emissions for local residents, while the bioaerosols are always neglected as another threat to on-site workers. In this study, bioaerosols samples were collected from the typical operation scenes in the large-scale modern landfill, and the emission levels of airborne bacteria, pathogenic species, and fungi were quantified and co-related. The corresponding exposure risks were assessed based on the average daily dose via inhalation and skin contact. It was found that the levels of culturable bacteria and fungi in all landfill samples were around 33–22778 CFU/m3 and 8–450 CFU/m3, and the active-working landfill area and the covered area were the maximum and minimum emission sources, respectively, meaning that the bioaerosols were mainly released from the areas related with the fresh waste operation. Acinetobacter sp., Massilia sp., Methylobacterium-Methylorubrum sp. and Noviherbaspirillum sp. were the main bacterial populations, with a percentage of 42.56%, 89.82%, 70.24% and 30.20% respectively in total bioaerosols measured. With regards to the health risk, the health risks via inhalation were the main potential risks, with four orders of magnitude higher than that of skin contact. Active-working area showed the critical point for non-carcinogenic risks, with a hazard quotient of 1.68, where 80 m protection distance is recommended for on-site worker protection, plus more careful protection measures.  相似文献   

16.
王雷  葛茂发  王炜罡 《环境化学》2011,30(1):120-129
烟炱气溶胶是大气气溶胶的重要组成部分,它能直接或间接地影响地-气辐射平衡,进而对全球气候产生重大影响.目前,关于烟炱气溶胶光学性质的研究已经成为气溶胶科学中的前沿和热点课题,对其进行系统的实验室研究可以为更好地分析和认识外场观测结果提供基础,并为数值模式模拟研究提供准确的基本参数.本文简要介绍了烟炱气溶胶的来源和分类,...  相似文献   

17.
Dust and Sand Storms (DSS) originating in deserts in arid and semi-arid regions are events raising global public concern. An important component of atmospheric aerosols, dust aerosols play a key role in climatic and environmental changes at the regional and the global scale. Deserts and semi-deserts are the main source of dust and sand, but regions that undergo vegetation deterioration and desertification due to climate change and human activities also contribute significantly to DSS. Dust aerosols are mainly composed of dust particles with an average diameter of 2 mm, which can be transported over thousands of kilometers. Dust aerosols influence the radiation budget of the earthatmosphere system by scattering solar short-wave radiation and absorbing surface long-wave radiation. They can also change albedo and rainfall patterns because they can act as cloud condensation nuclei (CCN) or ice nuclei (IN). Dust deposition is an important source of both marine nutrients and contaminants. Dust aerosols that enter marine ecosystems after long-distance transport influence phytoplankton biomass in the oceans, and thus global climate by altering the amount of CO2 absorbed by phytoplankton. In addition, the carbonates carried by dust aerosols are an important source of carbon for the alkaline carbon pool, which can buffer atmospheric acidity and increase the alkalinity of seawater. DSS have both positive and negative impacts on human society: they can exert adverse impacts on human’s living environment, but can also contribute to the mitigation of global warming and the reduction of atmospheric acidity.
  相似文献   

18.
A continuous flow streamwise thermal gradient cloud condensation nuclei (CCN) counter with an aerosol focusing and a laser-charge-coupled device (CCD) camera detector system was developed here. The counting performance of the laser-CCD camera detector system was evaluated by comparing its measured number concentrations with those measured with a condensation particle counter (CPC) using polystyrene latex (PSL) and NaCl particles of varying sizes. The CCD camera parameters (e.g. brightness, gain, gamma, and exposure time) were optimized to detect moving particles in the sensing volume and to provide the best image to count them. The CCN counter worked well in the particle number concentration range of 0.6–8000 #·cm-3 and the minimum detectable size was found to be 0.5 μm. The supersaturation in the CCN counter with varying temperature difference was determined by using size-selected sodium chloride particles based on K?hler equation. The developed CCN counter was applied to investigate CCN activity of atmospheric ultrafine particles at 0.5% supersaturation. Data showed that CCN activity increased with increasing particle size and that the higher CCN activation for ultrafine particles occurred in the afternoon, suggesting the significant existence of hygroscopic or soluble species in photochemically-produced ultrafine particles.  相似文献   

19.
New particle formation (NPF) event at multi rural sites in China Identifying the characteristics of NPF event Comparing NPF event between clean and polluted conditions Quantifying contribution to the cloud condensation nuclei Implication of climate and air quality Long-term continuous measurements of particle number size distributions with mobility diameter sizes ranging from 3 to 800 nm were performed to study new particle formation (NPF) events at Shangdianzi (SDZ), Mt. Tai (TS), and Lin’an (LAN) stations representing the background atmospheric conditions in the North China Plain (NCP), Central East China (CEC), and Yangtze River Delta (YRD) regions, respectively. The mean formation rate of 3-nm particles was 6.3, 3.7, and 5.8 cm−3·s−1, and the mean particle growth rate was 3.6, 6.0, and 6.2 nm·h−1 at SDZ, TS, and LAN, respectively. The NPF event characteristics at the three sites indicate that there may be a stronger source of low volatile vapors and higher condensational sink of pre-existing particles in the YRD region. The formation rate of NPF events at these sites, as well as the condensation sink, is approximately 10 times higher than some results reported at rural/urban sites in western countries. However, the growth rates appear to be 1–2 times higher. Approximately 12%–17% of all NPF events with nucleated particles grow to a climate-relevant size (>50 nm). These kinds of NPF events were normally observed with higher growth rate than the other NPF cases. Generally, the cloud condensation nuclei (CCN) number concentration can be enhanced by approximately a factor of 2–6 on these event days. The mean value of the enhancement factor is lowest at LAN (2–3) and highest at SDZ (~4). NPF events have also been found to have greater impact on CCN production in China at the regional scale than in the other background sites worldwide.  相似文献   

20.
曹宏杰  倪红伟 《生态环境》2013,(11):1846-1852
土壤有机碳是陆地碳库的重要组成部分,其积累和分解的变化直接影响全球的碳平衡。据估计,全球土壤(表层1m)有机碳积累总量相当于大气中碳总量的2~3倍。土壤是温室气体的源或汇,土壤碳库的变化将影响大气C02的浓度,因此,土壤碳库对人类活动的响应也是全球碳循环和全球变化研究的热点。在全球变化的大背景下,大气CO2升高导致植被生态系统碳平衡的改变进而对土壤碳循环产生影响。总结了陆地生态系统碳循环对大气C02浓度升高响应的主要生物学机制及过程,简述了大气C02浓度升高对影响土壤碳输入和输出的各因素的研究进展,并指出未来研究的主要方向。在大气C02浓度升高条件下,陆地生态系统碳循环的变化主要反映在以下几个方面:1)不同类型植物群落的净初级生产力(NPP)显著增加,但湿地植物的净初级生产力也有可能降低;2)光合产物向根系分配的数量增加,地上/地下生物量降低,根系形态发生变化,根系周转速率和根系分泌等过程的碳流量提高;3)植物含氮量降低,C/N提高,次生代谢产物增加,微生物生长受到抑制,植物残体分解速率降低;4)土壤呼吸速率显著增加,提高幅度受植物类型与土壤状况的影响;5)进入土壤的植物残体及分泌物的数量和性质影响土壤酶的活性,脱氢酶和转化酶活性增加,酚氧化酶和纤维素酶受植物类型与环境条件的影响;6)土壤中真菌的数量的增加幅度要高于细菌;7)CH4释放量增加,在植物的生长期表现更为明显。由于陆地生态系统碳循环的复杂性,研究结果仍有很大的不确定性。大气C02浓度升高与全球变化的其它表现间的交互作用将是今后研究的重点,同时由于土壤碳循环是一个由微生物介导的生物地球化学循环过程,因此,加强陆地生态系统碳循环的微生物机制研究也将为全面理解碳循环的过程提供更加准确的研究理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号