首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Demographic Responses by Birds to Forest Fragmentation   总被引:1,自引:0,他引:1  
Abstract:  Despite intensive recent research on the effects of habitat loss and fragmentation on bird populations, our understanding of underlying demographic causes of population declines is limited. We reviewed avian demography in relation to habitat fragmentation. Then, through a meta-analysis, we compared specific demographic responses by forest birds to habitat fragmentation, providing a general perspective of factors that make some species and populations more vulnerable to fragmentation than others. We obtained data from the scientific literature on dispersal, survival, fecundity, and nesting success of birds. Birds were divided into subgroups on the basis of region, nest site, biogeographical history, and migration strategy. Species most sensitive to fragmentation were ground- or open-nesters nesting in shrubs or trees. Residents were equally sensitive to fragmentation in the Nearctic and Palearctic regions, but Nearctic migrants were more sensitive than Palearctic migrants. Old World species were less sensitive than New World species, which was predicted based on the history of forest fragmentation on these two continents. Pairing success was the variable most associated with fragmentation, suggesting an important role of dispersal. Fledgling number or condition, timing of nesting, and clutch size were not associated with sensitivity to fragmentation, suggesting that negative fragmentation effects on birds do not generally result from diminished food resources with increasing level of fragmentation. Future studies on demographic responses of birds to habitat fragmentation would be more effective if based on a combination of measures that can distinguish among the demographic mechanisms underlying population changes related to habitat fragmentation.  相似文献   

2.
Populations of many common grassland birds in the midwestern United States have been declining in recent decades. These declines have been particularly pronounced in Illinois, where the prairie has been severely fragmented and disturbed by farming. This article describes transitions in agricultural land use in Illinois since the early 1800s, their effects on grassland habitat, and responses by avifauna. Furthermore, factors affecting nesting by birds are considered from a landscape perspective for a study area in central Illinois during the period (1973–1981) when cropping became so intensive that grassland persisted primarily as linear edges. There was a paucity of avifauna nesting on grassy edge habitats on the study area, with a mean of 2.2 nests per ha, representing only eight species. Nest densities and species diversity were highest on study plots where grassland was nearby, where cover types were heterogeneous, and where there were corridors connecting plots to the surrounding landscape. Nest success was variable from year to year, and for Ring-necked Pheasants ( Phasianus colchicus ) the average annual nest success on edge habitats was positively related to the total amount of grassy cover (including hay and small grains) per nesting pleasant. The findings suggest that it is too simplistic to conclude that linear habitats, compared to field settings, are "predator traps." Responses by birds to habitat deteríoration in Illinois may foretell future trends elsewhere in North America where farming practices are becoming more intensive.  相似文献   

3.
Grassland birds are declining faster than any other bird guild across North America. Shrinking ranges and population declines are attributed to widespread habitat loss and increasingly fragmented landscapes of agriculture and other land uses that are misaligned with grassland bird conservation. Concurrent with habitat loss and degradation, temperate grasslands have been disproportionally affected by climate change relative to most other terrestrial biomes. Distributions of grassland birds often correlate with gradients in climate, but few researchers have explored the consequences of weather on the demography of grassland birds inhabiting a range of grassland fragments. To do so, we modeled the effects of temperature and precipitation on nesting success rates of 12 grassland bird species inhabiting a range of grassland patches across North America (21,000 nests from 81 individual studies). Higher amounts of precipitation in the preceding year were associated with higher nesting success, but wetter conditions during the active breeding season reduced nesting success. Extremely cold or hot conditions during the early breeding season were associated with lower rates of nesting success. The direct and indirect influence of temperature and precipitation on nesting success was moderated by grassland patch size. The positive effects of precipitation in the preceding year on nesting success were strongest in relatively small grassland patches and had little effect in large patches. Conversely, warm temperatures reduced nesting success in small grassland patches but increased nesting success in large patches. Mechanisms underlying these differences may be patch‐size‐induced variation in microclimates and predator activity. Although the exact cause is unclear, large grassland patches, the most common metric of grassland conservation, appears to moderate the effects of weather on grassland‐bird demography and could be an effective component of climate‐change adaptation.  相似文献   

4.
Abstract: Small forests in agricultural landscapes are generally thought to be population sinks where the nesting success of Neotropical migrant songbirds is too low to sustain populations. In 1996 and 1997, we assessed the nesting success and productivity of Wood Thrushes (  Hylocichla mustelina ) and Rose-breasted Grosbeaks (  Pheucticus ludovicianus ) in the Region of Waterloo, a highly fragmented agricultural landscape with 14% forest cover in southwestern Ontario. We located 154 Wood Thrush nests and 63 Rose-breasted Grosbeak nests in 26 small forest fragments (3–14 ha) and 15 large fragments (26–140 ha). We used the Mayfield method to determine nesting success. Across all sites nesting success was 51% for Wood Thrushes and 46% for Rose-breasted Grosbeaks. Nesting success and productivity rates were used in a simple population growth model that suggested that the Wood Thrushes but not the Rose-breasted Grosbeaks were a self-sustaining population. Forest size and distance of nests to the nearest forest edge (measured in five distance classes ranging from 0 to over 100 m) did not significantly affect the nesting success or productivity of either species. Brown-headed Cowbirds (   Molothrus ater ) parasitized 47% of all Wood Thrush nests and 10% of all Rose-breasted Grosbeak nests; parasitism significantly reduced Wood Thrush productivity but not that of Rose-breasted Grosbeaks. Our findings challenge the prevailing notion that small woodlots in a farmed landscape are invariably habitat sinks and offer additional incentive for habitat protection in settled landscapes where small forest fragments are often all that remain for conservation purposes.  相似文献   

5.
The Early Development of Forest Fragmentation Effects on Birds   总被引:4,自引:0,他引:4  
The early development of forest fragmentation effects on forest organisms is poorly understood partly because most fragmentation studies have been done in agricultural or suburban landscapes, long after the onset of fragmentation. We develop a temporal model of forest fragmentation effects on densities of forest-breeding birds and provide data from an active industrial forest landscape to test the model. The model and our empirical data indicate that densities of several forest-dwelling bird species can increase within a forest stand soon after the onset of fragmentation as a result of displaced individuals packing into remaining habitat. Along with higher densities in the newly formed fragments, pairing success in one species, the Ovenbird ( Seiurus aurocapillus ), was lower in fragments than nonfragments, possibly due to behavioral dysfunction resulting from high densities. Thus, density was inversely related to productivity. The duration and extent of increased densities following onset of fragmentation depends on many factors, including the sensitivity of a species to edge and area effects, the duration and rate of habitat loss and fragmentation, and the proximity of a forest stand to the disturbance. Incipient forest fragmentation may affect populations differently from later stages of fragmentation when the geometry of the landscape has reached a more stable configuration. Our model and data indicate, for reasons unrelated to traditional edge effects, that large tracts of forest can be important because they are relatively free from the variety of plant and animal population dynamics that might take place near new edges, including the encroachment of individuals displaced by habitat loss.  相似文献   

6.
Abstract:  Habitat restoration is often recommended in conservation without first evaluating whether populations are in fact habitat limited and thus whether declining populations can be stabilized or recovered through habitat restoration. We used a spatially structured demographic model coupled with a dynamic neutral landscape model to evaluate whether habitat restoration could rescue populations of several generic migratory songbirds that differed in their sensitivity to habitat fragmentation (i.e., severity of edge effects on nesting success). Simulating a best-case scenario, landscapes were instantly restored to 100% habitat before, at, or after habitat loss exceeded the species' vulnerability threshold. The vulnerability threshold is a measure of extinction risk, in which the change in population growth rate ( δλ ) scaled to the rate of habitat loss ( δh ) falls below −1% ( δλ/δh ≤ −0.01). Habitat restoration was most effective for species with low-to-moderate edge sensitivities and in landscapes that had not previously experienced extensive fragmentation. To stabilize populations of species that were highly edge sensitive or any species in heavily fragmented landscapes, restoration needed to be initiated long before the vulnerability threshold was reached. In practice, habitat restoration is generally not initiated until a population is at risk of extinction, but our model results demonstrate that some populations cannot be recovered at this point through habitat restoration alone. At this stage, habitat loss and fragmentation have seriously eroded the species' demographic potential such that halting population declines is limited more by demographic factors than the amount of available habitat. Evidence that populations decline in response to habitat loss is thus not sufficient to conclude that habitat restoration will be sufficient to rescue declining populations.  相似文献   

7.
The importance of large reserves has been long maintained in the scientific literature, often leading to dismissal of the conservation potential of small reserves. However, over half the global protected-area inventory is composed of protected areas that are <100 ha, and the median size of added protected area is decreasing. Studies of the conservation value of small reserves and fragments of natural area are relatively uncommon in the literature. We reviewed SCOPUS and WOK for studies on small reserve and fragment contributions to biodiversity conservation and ecosystem services, and fifty-eight taxon-specific studies were included in the review. Small reserves harbored substantial portions (upward of 50%) of regional species diversity for many taxa (birds, plants, amphibians, and small mammals) and even some endemic, specialist bird species. Unfortunately, small reserves and fragments almost always harbored more generalist and exotic species than large reserves. Community composition depended on habitat quality, surrounding land use (agricultural vs. urban), and reserve and fragment size, which presents opportunities for management and improvement. Small reserves also provided ecosystem services, such as pollination and biological pest control, and cultural services, such as recreation and improved human health. Limitations associated with small reserves, such as extinction debt and support of area-sensitive species, necessitate a complement of larger reserves. However, we argue that small reserves can make viable and significant contributions to conservation goals directly as habitat and indirectly by increasing landscape connectivity and quality to the benefit of large reserves. To effectively conserve biodiversity for future generations in landscapes fragmented by human development, small reserves and fragments must be included in conservation planning.  相似文献   

8.
Juvenile Survival in a Population of Neotropical Migrant Birds   总被引:4,自引:0,他引:4  
Determination of population productivity of Neotropical migrant birds and assessment of breeding habitat quality have been based on population densities and nesting success. Data on juvenile survival improve our estimates of population productivity, provide information on factors during the post-fledging period that affect this productivity and, with comparative data, enable us to better assess breeding habitat quality. We present the first estimate of post-fledging juvenile survival in a population of Neotropical migrant birds. We studied post-fledging survival in a population of Wood Thrush ( Hylocichla mustelina) in southern Missouri, (U.S.) an area hypothesized to contain source populations. Nesting success during our study period was 0.266, and individual survival within the nest was 0.245. Post-fledging survival during the first 8 weeks after fledging was 0.423. Survival varied significantly between post-fledging weekly age classes, with survival of weeks 1, 2, 3, and 4 through 8 being 0.716, 0.930, 0.637, and 1.00, respectively. Probability of predation after fledging was 0.506. Probability of mortality by other causes was 0.071. Probability of predation varied by weekly age class and may have been related to behaviors occurring at different developmental stages. Post-fledging survival was not correlated with nestling mass and did not change throughout the course of the breeding season. Analysis of the source/sink status of the population based on our estimates of nesting success and post-fledging survival indicates that young were being produced below replacement levels during our study period. Large-scale management decisions should take into account potential fluctuations in the productivity of Neotropical migrant populations over time. Data on post-fledging juvenile survival are needed from other populations of Neotropical migrant birds to more accurately assess differential productivity between populations and better assess breeding habitat quality.  相似文献   

9.
Effects of Habitat Area on the Distribution of Grassland Birds in Maine   总被引:4,自引:0,他引:4  
We used multiple and logistic regression analysis to study the breeding-area requirements of 10 species of grassland and early-successional birds at 90 grassland-barren sites in Maine. The incidence of six of the species was clearly sensitive to the area of grassland. Upland Sandpipers, the species with the largest area requirements, were infrequent at sites of less than 50 ha and reached 50% incidence at those of about 200 ha. Grasshopper Sparrows reached 50% incidence at about 100 ha, Vesper Sparrows at about 20 ha, and Savannah Sparrows at about 10 ha. Incidence for three edge species, Brown Thrasher, Common Yellowthroat, and Song Sparrow, was negatively correlated with open area, and incidence for Field Sparrows was not strongly influenced by grassland size. These results indicate that grasslands need to be approximately 200 ha in area if they are to be likely to support a diverse grass land bird fauna. However, large grasslands or grassland-barrens are rare; random samples indicated that in Maine only 1% of hayfields and only 8% of grassland-barrens were more than 64 ha in area. Conservation efforts seeking to protect habitat for rare grassland birds need to consider sites of at least 100 ha—and preferably 200 ha—in size, and these are notably rare in Maine and probably throughout New England and eastern North America. Airports provide some of the last extensive patches of grassland habitat in the northeast. To maintain viable populations of area-sensitive grassland birds, management of these sites for nesting birds will become increasingly important.  相似文献   

10.
Tropical rain forests are rapidly cleared, fragmented, and degraded in sub-Saharan Africa; however, little is known about the response of species and even of key ecological groups to these processes. One of the most intriguing (but often neglected) ecological phenomena in African rain forests is the interaction between swarm-raiding army ants and ant-following birds. Similar to their well-known Neotropical representatives, ant-following birds in Africa track the massive swarm raids of army ants and feed on arthropods flushed by the ants. In this study we analyzed the effect of habitat fragmentation and degradation of a mid-altitude Congo-Guinean rain forest in western Kenya on the structure of ant-following bird flocks. Significant numbers of swarm raids were located in all forest fragments and in both undegraded and degraded forest. Fifty-six different species of birds followed army ant raids, forming bird flocks of one to 15 species. We quantitatively differentiated the bird community into five species of specialized ant-followers and 51 species of opportunistic ant-followers. Species richness and size of bird flocks decreased with decreasing size of forest fragments and was higher in undegraded than in degraded habitat. This was caused by the decrease of the species richness and number of specialized ant-followers at swarms, while the group of opportunistic ant-followers was affected little by habitat fragmentation and degradation. The composition of bird flocks was more variable in small fragments and degraded forest, compared to undegraded habitat in large fragments. The effect of habitat fragmentation on flock structure was best explained by the strong decline of the abundance of specialized ant-followers in small forest fragments. To conserve the association of army ants and ant-following birds in its natural state, vast areas of unfragmented and undegraded tropical rain forest are necessary.  相似文献   

11.
Pollinator welfare is a recognized research and policy target, and urban greenspaces have been identified as important habitats. Yet, landscape-scale habitat fragmentation and greenspace management practices may limit a city's conservation potential. We examined how landscape configuration, composition, and local patch quality influenced insect nesting success across inner-city Cleveland, Ohio (U.S.A.), a postindustrial legacy city containing a high abundance of vacant land (over 1600 ha). Here, 40 vacant lots were assigned 1 of 5 habitat treatments (T1, vacant lot; T2, grass lawn; T3, flowering lawn; T4, grass prairie; and T5, flowering prairie), and we evaluated how seeded vegetation, greenspace size, and landscape connectivity influenced cavity-nesting bee and wasp reproduction. Native bee and wasp larvae were more abundant in landscapes that contained a large patch (i.e., >6 ha) of contiguous greenspace, in habitats with low plant biomass, and in vacant lots seeded with a native wildflower seed mix or with fine-fescue grass, suggesting that fitness was influenced by urban landscape features and habitat management. Our results can guide urban planning by demonstrating that actions that maintain large contiguous greenspace in the landscape and establish native plants would support the conservation of bees and wasps. Moreover, our study highlights that the world's estimated 350 legacy cities are promising urban conservation targets due to their high abundance of vacant greenspace that could accommodate taxa's habitat needs in urban areas.  相似文献   

12.
Urbanization within the Tucson Basin of Arizona during the past 50+ years has fragmented the original desert scrub into patches of different sizes and ages. These remnant patches and the surrounding desert are dominated by Larrea tridentata (creosote bush), a long-lived shrub whose flowers are visited by > 120 native bee species across its range. Twenty-one of these bee species restrict their pollen foraging to L. tridentata. To evaluate the response of this bee fauna to fragmentation, we compared species incidence and abundance patterns for the bee guild visiting L. tridentata at 59 habitat fragments of known size (0.002-5 ha) and age (up to 70 years), and in adjacent desert. The 62 bee species caught during this study responded to fragmentation heterogeneously and not in direct relation to their abundance or incidence in undisturbed desert. Few species found outside the city were entirely absent from urban fragments. Species of ground-nesting L. tridentata specialists were underrepresented in smaller fragments and less abundant in the smaller and older fragments. In contrast, cavity-nesting bees (including one L. tridentata specialist) were overrepresented in the habitat fragments, probably due to enhanced nesting opportunities available in the urban matrix. Small-bodied bee species were no more likely than larger bodied species to be absent from the smaller fragments. The introduced European honey bee, Apis mellifera, was a minor faunal element at > 90% of the fragments and exerted little if any influence on the response of native bee species to fragmentation. Overall, bee response to urban habitat fragmentation was best predicted by ecological traits associated with nesting and dietary breadth. Had species been treated as individual units in the analyses, or pooled together into one analysis, these response patterns may not have been apparent. Pollination interactions with this floral host are probably not adversely affected in this system because of its longevity and ability to attract diverse pollinators but will demand careful further study to understand.  相似文献   

13.
Abstract:  Despite two decades of research into the effects of habitat fragmentation and edges on nesting birds, critical information about how edges affect the success of natural nests of Neotropical migratory songbirds breeding in heterogeneous landscapes is still missing. We studied abundance and nesting success in Wood Thrushes ( Hylocichla mustelina ) breeding across a heterogeneous landscape in central New York from 1998 to 2000 to test the hypothesis that edge effects on nesting passerines are stronger in fragmented than contiguous landscapes. We monitored nests to estimate nesting success in edge and interior habitats in both fragmented and contiguously forested landscapes. In contiguous landscapes, daily survival rate did not differ between edge nests (0.963) and interior nests (0.968) (χ2= 0.19, p = 0.66). In contrast, in fragmented landscapes, daily survival estimates were higher in interior (0.971) than edge (0.953) nests (χ2= 3.1, p = 0.08). Our study supports the hypothesis that landscape composition moderates edge effects on actual nests of birds but does not determine the mechanisms causing these patterns.  相似文献   

14.
Abstract:  Species-area relationships and island biogeography theory are commonly used to predict how species richness will decline with fragmentation. There are a variety of largely untested assumptions in these approaches, including the assumptions that populations are distributed uniformly before fragmentation, and that local extinctions are due to effects of small population sizes. If populations are not distributed uniformly, then populations can be abundant locally but rare globally. This would cause extinction rates to be smaller than predicted. We tested extinction theory by developing estimates of the number of plant species that should be present in small tallgrass prairie fragments and then testing the uniformity assumption by partitioning species richness into α (within site) and β (among site) components in Iowa prairies. Many more native prairie plant species were present in surveys of prairie fragments (491) than was predicted based on theory (27–207). A large proportion (75%) of the total species richness was β richness. We suggest that the high proportion of β richness was responsible for the shallow species-area slopes and the lower than expected number of species losses and that a better understanding of what determines β diversity will improve predictions of fragmentation effects on richness of plants. We also suggest that plants in prairie remnants may be best conserved by protecting different prairie types rather than by protecting a few large areas containing a single prairie type.  相似文献   

15.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   

16.
Biodiversity declines and ecosystem decay follow forest fragmentation; initially, abundant species may become rare or be extirpated. Underlying mechanisms behind delayed extirpation of certain species following forest fragmentation are unknown. Species declines may be attributed to an inadequate number of breeding adults required to replace the population or decreased juvenile survival rate due to reduced recruitment or increased nest predation pressures. We used 10 years of avian banding data, 5 years before and 4 years after fragment isolation, from the Biological Dynamics of Forest Fragments Project, carried out near Manaus, Brazil, to investigate the breeding activity hypothesis that there is less breeding activity and fewer young after relative to before fragment isolation. We compared the capture rates of active breeding and young birds in 3 forest types (primary forest, fragment before isolation, and fragment after isolation) and the proportion of active breeding and young birds with all birds in each unique fragment type before and after isolation. We grouped all bird species by diet (insectivore or frugivore) and nesting strategy (open cup, cavity, or enclosed) to allow further comparisons among forest types. We found support for the breeding activity hypothesis in insectivorous and frugivorous birds (effect sizes 0.45 and 0.53, respectively) and in birds with open-cup and enclosed nesting strategies (effect sizes 0.56 and 0.44, respectively) such that on average there were more breeding birds in fragments before isolation relative to after isolation. A larger proportion of birds in the community were actively breeding before fragment isolation (72%) than after fragment isolation (11%). Unexpectedly, there was no significant decrease in the number of young birds after fragment isolation, although sample sizes for young were small (n = 43). This may have been due to sustained immigration of young birds to fragments after isolation. Together, our results provide some of the strongest evidence to date that avian breeding activity decreases in response to fragment isolation, which could be a fundamental mechanism contributing to ecosystem decay.  相似文献   

17.
Abstract: Extensive habitat loss and changing agricultural practices have caused widespread declines in grassland birds throughout North America. The Flint Hills of Kansas and Oklahoma—the largest remaining tallgrass prairie—is important for grassland bird conservation despite supporting a major cattle industry. In 2004 and 2005, we assessed the community, population, and demographic responses of grassland birds to the predominant management practices (grazing, burning, and haying) of the region, including grasslands restored under the Conservation Reserve Program (CRP). We targeted 3 species at the core of this avian community: the Dickcissel (Spiza americana), Grasshopper Sparrow (Ammodramus savannarum), and Eastern Meadowlark (Sturnella magna). Bird diversity was higher in native prairie hayfields and grazed pastures than CRP fields, which were dominated by Dickcissels. Although Dickcissel density was highest in CRP, their nest success was highest and nest parasitism by Brown‐headed Cowbirds (Moluthrus ater) lowest in unburned hayfields (in 2004). Conversely, Grasshopper Sparrow density was highest in grazed pastures, but their nest success was lowest in these pastures and highest in burned hayfields, where cowbird parasitism was also lowest (in 2004). Management did not influence density and nest survival of Eastern Meadowlarks, which were uniformly low across the region. Nest success was extremely low (5–12%) for all 3 species in 2005, perhaps because of a record spring drought. Although the CRP has benefited grassland birds in agricultural landscapes, these areas may have lower habitat value in the context of native prairie. Hayfields may provide beneficial habitat for some grassland birds in the Flint Hills because they are mowed later in the breeding season than elsewhere in the Midwest. Widespread grazing and annual burning have homogenized habitat—and thus grassland‐bird responses—across the Flint Hills. Diversification of management practices could increase habitat heterogeneity and enhance the conservation potential of the Flint Hills for grassland birds.  相似文献   

18.
Understanding how habitat fragmentation affects individual species is complicated by challenges associated with quantifying species-specific habitat and spatial variability in fragmentation effects within a species’ range. We aggregated a 29-year breeding survey data set for the endangered marbled murrelet (Brachyramphus marmoratus) from >42,000 forest sites throughout the Pacific Northwest (Oregon, Washington, and northern California) of the United States. We built a species distribution model (SDM) in which occupied sites were linked with Landsat imagery to quantify murrelet-specific habitat and then used occupancy models to test the hypotheses that fragmentation negatively affects murrelet breeding distribution and that these effects are amplified with distance from the marine foraging habitat toward the edge of the species’ nesting range. Murrelet habitat declined in the Pacific Northwest by 20% since 1988, whereas the proportion of habitat comprising edges increased by 17%, indicating increased fragmentation. Furthermore, fragmentation of murrelet habitat at landscape scales (within 2 km of survey stations) negatively affected occupancy of potential breeding sites, and these effects were amplified near the range edge. On the coast, the odds of occupancy decreased by 37% (95% confidence interval [CI] –54 to 12) for each 10% increase in edge habitat (i.e., fragmentation), but at the range edge (88 km inland) these odds decreased by 99% (95% CI 98 to 99). Conversely, odds of murrelet occupancy increased by 31% (95% CI 14 to 52) for each 10% increase in local edge habitat (within 100 m of survey stations). Avoidance of fragmentation at broad scales but use of locally fragmented habitat with reduced quality may help explain the lack of murrelet population recovery. Further, our results emphasize that fragmentation effects can be nuanced, scale dependent, and geographically variable. Awareness of these nuances is critical for developing landscape-level conservation strategies for species experiencing broad-scale habitat loss and fragmentation.  相似文献   

19.
Abstract: Forest fragmentation may negatively affect populations typically found within continuous forest tracts. Some effects, such as absence from small fragments, are obvious, but other effects may be subtle and easily overlooked. We evaluated the hypothesis that forest birds dwelling in fragments, where microclimatic conditions have been shown to be hotter and drier than in continuous forest, may be in poorer physiological condition than those in the forest interior. We studied two bird species, the Wedge-billed Woodcreeper (  Glyphorynchus spirurus ) and the White-crowned Manakin (    Pipra pipra ), common to the fragmented landscape north of Manaus, Brazil. We analyzed feather growth rates in Pipra and Glyphorynchus captured in 1-, 10-, and 100-ha forest fragments and continuous forest. Mean daily feather growth rates of the outer right rectrix of birds captured in fragments were significantly slower than feather growth rates of birds captured in continuous forest. Based on recapture data, Wedge-billed Woodcreepers probably grew their feathers in sites where they were first captured. White-crowned Manakins, however, were highly mobile and were recaptured rarely. Although we cannot conclusively show that fragmentation caused birds to be in poorer physiological condition, the data indicate that birds in poorer physiological condition were more likely to be captured in fragments than in continuous forest. Thus, our data suggest that forest fragmentation may have subtle but important effects on species that are relatively common after landscape alteration.  相似文献   

20.
Bird populations in North America's grasslands have declined sharply in recent decades. These declines are traceable, in large part, to habitat loss, but management of tallgrass prairie also has an impact. An indirect source of decline potentially associated with management is brood parasitism by the Brown-headed Cowbird (Molothrus ater), which has had substantial negative impacts on many passerine hosts. Using a novel application of regression trees, we analyzed an extensive five-year set of nest data to test how management of tallgrass prairie affected rates of brood parasitism. We examined seven landscape features that may have been associated with parasitism: presence of edge, burning, or grazing, and distance of the nest from woody vegetation, water, roads, or fences. All five grassland passerines that we included in the analyses exhibited evidence of an edge effect: the Grasshopper Sparrow (Ammodramus savannarum), Henslow's Sparrow (A. henslowii), Dickcissel (Spiza americana), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Meadowlark (Sturnella magna). The edge was represented by narrow strips of woody vegetation occurring along roadsides cut through tallgrass prairie. The sparrows avoided nesting along these woody edges, whereas the other three species experienced significantly higher (1.9-5.3x) rates of parasitism along edges than in prairie. The edge effect could be related directly to increase in parasitism rate with decreased distance from woody vegetation. After accounting for edge effect in these three species, we found evidence for significantly higher (2.5-10.5x) rates of parasitism in grazed plots, particularly those burned in spring to increase forage, than in undisturbed prairie. Regression tree analysis proved to be an important tool for hierarchically parsing various landscape features that affect parasitism rates. We conclude that, on the Great Plains, rates of brood parasitism are strongly associated with relatively recent road cuts, in that edge effects manifest themselves through the presence of trees, a novel habitat component in much of the tallgrass prairie. Grazing is also a key associate of increased parasitism. Areas managed with prescribed fire, used frequently to increase forage for grazing cattle, may experience higher rates of brood parasitism. Regardless, removing trees and shrubs along roadsides and refraining from planting them along new roads may benefit grassland birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号