首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为了解HEPA(high efficiency particle air filter,高效空气过滤器)空气净化器在小学教室和寝室的净化效果,于2019年3—4月在北京市一所全寄宿小学开展了一项HEPA空气净化器的交叉干预研究.记录干预组、非干预组室内和室外PM2.5、PM10、PM1的浓度,计算空气净化器的净化率;采用多元线性回归模型探索净化效果的影响因素.结果表明:①空气净化器对PM2.5、PM10、PM1的净化率分别为41.3%〔Ql~Qu(下四分位数~上四分位数,下同):0~53.1%〕、40.7%(10.5%~46.2%)和34.9%(9.6%~40.3%),其中对PM2.5的净化率最高;寝室的净化率高于教室的净化率.②当室外PM2.5浓度为[115,150)μg/m3时对PM2.5的净化率最高,为52.83%(50.26%~56.13%),PM10和PM1亦有类似结果.③多元线性回归分析表明,室外PM2.5浓度 < 35 μg/m3时,开门通风和室内人员活动分别使室内PM2.5浓度下降3.73 μg/m3〔95%置信区间(95% CI):(0.60 μg/m3,6.86 μg/m3)〕和升高3.4 μg/m3(0.22 μg/m3,6.58 μg/m3);室外PM2.5浓度为[35,150)μg/m3时,空气净化器使室内PM2.5浓度下降33.36 μg/m3(16.47 μg/m3,50.25 μg/m3);室外PM2.5浓度≥150 μg/m3时,空气净化器和开门通风分别使室内PM2.5浓度下降48.87 μg/m3(25.62 μg/m3,72.12 μg/m3)和升高37.65 μg/m3(5.60 μg/m3,69.69 μg/m3).研究显示:空气净化器可同时降低室内PM2.5、PM10、PM1的浓度;当室外PM2.5浓度 < 35 μg/m3时,不需开启空气净化器;当室外PM2.5浓度为[35,150)μg/m3时,空气净化器有较好的净化效果,偶尔开窗通风不影响空气净化器的净化效果;当室外PM2.5浓度≥150 μg/m3时,开启空气净化器时应关闭门窗,以免影响其净化效果.   相似文献   

2.
利用西安市2014~2015年BC、PM2.5和气温及心脑血管疾病每日死亡人数等资料,基于时间序列的广义相加模型中的主效应模型、非参数二元响应模型和温度分层模型对其进行研究.结果表明,BC、PM2.5对心脑血管疾病死亡人数的影响存在滞后效应,最佳滞后时间下,BC、PM2.5浓度每增加1个IQR(BC:5.31μg/m3,PM2.5:40.30μg/m3),心脑血管疾病每日死亡人数ER(95% CI)分别为3.53%(95% CI:1.86,5.23)、2.01%(95% CI:1.06,2.97).气温与心脑血管疾病每日死亡人数的暴露反应关系呈“V”型分布特征,最适温度为26℃.低温和高污染物浓度对心脑血管疾病的影响存在协同放大效应,当气温低于26℃时,BC对人群健康风险比PM2.5更大.对于心脑血管疾病而言,不同人群的易感程度不同,女性群体对BC、PM2.5暴露更为敏感.当BC、PM2.5同时纳入其它一种或几种气态污染物时,对ER值无较大影响.BC仅占PM2.5浓度的一小部分,但健康影响不容忽视,BC可作为评估大气污染物健康风险的重要空气质量指标.  相似文献   

3.
为深入了解渭南市街区道路环境颗粒物污染时空分布特征,利用车载颗粒物传感器于2019年3月1日—5月31日对渭南市道路环境空气中PM2.5和PM10浓度开展在线走航测量,分析了影响渭南市道路环境颗粒物污染时空分布的主要因素.研究表明:①渭南市区内所有道路PM2.5平均浓度范围为37.7~51.9 μg/m3,浓度较高路段位于高新区东部和主城区;PM2.5~10(粗颗粒物)平均浓度范围为65.8~119.1 μg/m3,浓度较高路段位于各功能区城郊.②工作日早高峰时段(07:00—09:00)主城区道路环境PM2.5、PM2.5~10污染较非工作日严重,3种类型道路工作日07:00 PM2.5~10平均浓度呈支路(103.5 μg/m3)>主干道(102.1 μg/m3)>次干道(96.9 μg/m3)的特征.③对于高新区和老城区路段,除早晚高峰时段出现PM2.5和PM2.5~10浓度峰值外,凌晨时段渣土车行驶路段、裸地或施工现场周边路段易出现PM2.5~10浓度峰值,其PM2.5~10平均浓度最高达230.9 μg/m3(乐天大街西段的路段Ⅳ).研究显示,工作日早晚高峰时段,特别是早高峰,机动车排放导致渭南市高新区东部和主城区路段的PM2.5污染加重,夜间渣土车行驶导致高新区和老城区靠近城郊路段的颗粒物(PM2.5和PM2.5~10)污染加重.   相似文献   

4.
采用广义相加模型评估臭氧和细颗粒物(PM2.5)暴露对2008~2017年上海浦东居民慢性阻塞性肺疾病(COPD)死亡的超额危险度(ER)和寿命损失年(YLL)的影响.结果表明:臭氧污染集中在4~6月,PM2.5污染集中在12月、1~2月,10a间臭氧浓度逐年增加,PM2.5有小幅下降;在最大滞后效应下,臭氧每增加10μg/m3,ER和YLL分别为1.34%(95% CI:0.57%~2.12%)和54.98(95% CI:16.36~106.41)人·a;PM2.5每增加10μg/m3,两者分别为2.66%(95% CI:1.54%~3.79%)和130.92(95% CI:42.47~274.28)人·a;臭氧对男性和<85岁人群影响显著,PM2.5对女性和385岁人群影响显著;暖季时臭氧暴露相关的COPD死亡风险更高,冷季时PM2.5暴露相关的COPD死亡风险更高.臭氧和PM2.5致COPD死亡的影响可能因气温水平而异.  相似文献   

5.
为研究新型冠状病毒肺炎(COVID-19)疫情防控政策实施对上海市大气污染物质量浓度的影响,利用上海市内环某高层顶楼微环境平台观测了政策实施前10 d(2020-01-14—23)和实施后20 d(2020-01-24—02-12)的PM2.5和PM10质量浓度及气象要素(温度、相对湿度、风向、风速、大气压及降雨),结合2019年同期观测数据和杨浦四漂空气质量监测点的气态污染物逐时数据,采用描述性统计、合成分析、拉格朗日粒子扩散模式和Spearman相关系数方法,分析了政策实施前、后大气污染物特征及其影响因素。结果表明:1)污染物浓度变化方面。政策实施后,ρ(PM2.5)和ρ(PM10)和ρ(NO2)均明显降低,ρ(PM2.5)和ρ(PM10)分别由61.4,102.4 μg/m3降至38.1,63.5 μg/m3,降幅均为38.0%,ρ(NO2)由57.3 μg/m3降至27.0 μg/m3,降幅达到52.9%,而ρ(O3)由47.6 μg/m3增至69.5 μg/m3。ρ(PM2.5)和ρ(PM10)日变化特征由实施前的双峰双谷型变为单谷型。2)气象因素影响方面。上海地区南风异常减弱了冬季风强度,对流层中层正距平异常抑制了对流活动的发展,易导致大气污染物在近地面的汇聚。ρ(PM2.5)和ρ(PM10)与相对湿度呈负相关,风速对ρ(PM2.5)和ρ(PM10)的影响与风向有关。3)外源输入影响方面。长三角城市群及山东省、河南省等周边区域对上海市ρ(PM2.5)和ρ(PM10)贡献显著。  相似文献   

6.
采用便携式PM2.5采样仪于2010年10—11月对典型工业源——某钢铁厂下风向某住宅区室内、外的ρ(PM2.5)进行同步监测,同时对该区域居民每日时间-活动模式进行问卷调查,以评价居民住宅区内PM2.5潜在暴露剂量和暴露浓度(以ρ计)及探讨其影响因素. 结果表明:该钢铁厂下风向居民单位体质量、个体的住宅区内PM2.5潜在暴露剂量分别为36.1 μg/(kg·d)、960.8 μg/d,日均暴露浓度为120.1 μg/m3. 影响居民个体住宅区内PM2.5潜在暴露剂量的因素依次为工作日/周末>暴露浓度>文化程度;影响居民单位体质量住宅区内PM2.5潜在暴露剂量的因素依次为体质量>年龄>文化程度>工作日/周末>暴露浓度;性别与二者均没有显著相关关系.   相似文献   

7.
为探究超大城市居民在中心城区公交车站候车的颗粒物暴露情况,使用Grimm Aerosol 11-A型便携式气溶胶光学粒径谱仪对广州市越秀区和天河区共7个典型公交车站的颗粒物污染暴露进行平行监测.结果表明:①各公交车站的平均PM1、PM2.5和PM10暴露浓度分别为(33.35±15.96)(46.97±22.94)和(89.70±67.07)μg/m3,休息日公交车站的暴露浓度约为工作日的2倍,高峰期颗粒物暴露浓度略高于平峰期.②候车乘客数、道路车流量和相对湿度是影响PM1、PM2.5暴露浓度的主要因素,纯电动公交车停靠次数虽对细颗粒物暴露浓度无明显贡献,但其制动、轮胎与路面摩擦以及扬尘产生的粗粒径排放成为PM10污染的主要因素之一.③粗粒径模态(1~10 μm)颗粒物是颗粒物浓度的主要贡献源,其浓度占比高达63%,但数浓度占比不足1%;而积聚模态(0.25~1 μm)颗粒物数浓度占比在99%以上,部分车站积聚模态颗粒物质量浓度占比超过40%,说明细颗粒污染严重.④单位时间内公交车站候车乘客PM1、PM2.5和PM10总暴露剂量分别为(241.80±82.85)(342.59±112.11)和(681.17±226.89)μg/h,表现出工作日高于休息日、工作日高峰期高于平峰期、休息日高峰期低于平峰期的特征,部分车站(如DF和LS站)老人总暴露剂量占比超过40%,成为公交车站主要暴露对象之一.研究显示,广州市中心城区公交车站颗粒物暴露特征时空差异明显,道路车流量、相对湿度、候车乘客数和公交车停靠次数是影响颗粒物暴露浓度的主要因素.   相似文献   

8.
为揭示大学校园室内环境中PM2.5及其中PAEs(phthalate esters,邻苯二甲酸酯)的污染特征和师生暴露风险,以陕西师范大学长安校区为例,采集了校园秋冬季6个采样点52个室内PM2.5样品,利用气相色谱质谱联用仪检测了其中22种PAEs的浓度,分析了其构成和时空分布,评估了师生暴露健康风险.结果表明:①不同采样点PM2.5中22种PAEs的总浓度范围为237~413 μg/m3,其中6种优控PAEs的总浓度范围为4.81~7.47 μg/m3;室内PM2.5中的PAEs主要为邻苯二甲酸二异丁酯、邻苯二甲酸二环己酯和邻苯二甲酸二异壬酯,均为非优控PAEs,且这3种单体的浓度远高于6种优控PAEs单体的浓度.②各采样点检出的6种优控PAEs单体不同,图书馆和教室中6种优控PAEs均被检出,宿舍中检出4种,家属区中检出3种.③季节变化对室内PM2.5浓度及其中的PAEs浓度均会产生影响,冬季室内PM2.5平均浓度(58.3 μg/m3)高于秋季(55.4 μg/m3),12月6种优控PAEs单体浓度范围为0.250~3.86 μg/m3,明显高于其他月份.④来源解析表明,校园室内空气PM2.5中的PAEs主要来自室内装饰材料的释放,学生油墨及化妆品和个人护肤品的使用,以及增塑剂的使用及涂层的释放.⑤6种优控PAEs对人体产生的非致癌风险均较低,邻苯二甲酸丁基苄基酯和邻苯二甲酸二(2-乙基己基)酯的致癌风险均低于标准限值(1×10-6),二者的致癌风险均可忽略.研究显示,校园内不同室内环境中PM2.5污染程度及其中的PAEs浓度和构成均存在一定差异,师生暴露于室内空气PM2.5中6种优控PAEs的非致癌风险均较低,致癌风险可忽略,但环境中非优控PAEs的污染与风险应给予足够的关注.   相似文献   

9.
为研究济南市机动车排气对城市区域空气质量的影响,利用环境空气质量监测站点(简称"1号站点")和路边机动车尾气监测站点(简称"2号站点")的在线数据,以及基于4种模拟情景的CMAQ空气质量模型预测数据,研究了济南市城市区域大气污染物质量浓度变化规律及不同机动车车型对6种常规大气污染物的贡献.结果表明:①在采暖季,1号站点ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(CO)、ρ(O3)和ρ(SO2)月均值分别为435 μg/m3、702 μg/m3、84.2 μg/m3、6.8 mg/m3、4.5 μg/m3和92 μg/m3.②2015年12月24日(灰霾天),1号站点ρ(CO)、ρ(PM2.5)和ρ(PM10)均明显升高,ρ(SO2)、ρ(O3)和ρ(NO2)均变化不明显.2个监测站点中ρ(NO2)和ρ(PM10)均呈双峰趋势,2个峰值出现的时间与上、下班高峰期基本一致.除ρ(O3)和ρ(SO2)达GB 3095-2012《环境空气质量标准》二级标准外,其他污染物均超过GB 3095-2012二级标准限值,采暖季大气污染特征为颗粒物型污染.③机动车对研究区域NO2和PM10贡献率较大,其中,小型车对CO、NO2、PM10和PM2.5贡献率最大,其贡献率分别为85.7%、50.1%、53.4%和52.8%.机动车排放源能降低空气中ρ(O3),其总贡献率为-25.5%,其中大型车、中型车、小型车对O3的贡献率分别为-8.8%、-2.7%和-8.9%.灰霾天下不同机动车车型对空气中污染物质量浓度的总贡献率均比采暖季大.研究显示,济南市采暖季大气污染特征为颗粒物型污染,机动车排放源对空气中NO2和PM2.5有较大贡献.   相似文献   

10.
研究沙尘天气、非沙尘天气下颗粒物(PM2.5、PMC、PM10)对痤疮门诊量的影响,并进行性别、年龄分层研究,筛选敏感人群.收集了2013~2017年兰州市沙尘期与非沙尘期3家三甲医院痤疮门诊量资料、大气颗粒物及气象数据,采用基于泊松分布的分布滞后非线性模型(DLNM),控制气象因素、季节性和长期趋势、星期几效应等混杂因素,分析沙尘期与非沙尘期颗粒物对痤疮门诊量的影响及滞后效应.结果表明:沙尘期时,兰州市3家三甲医院痤疮日均门诊量为26人次,范围3~54人次.非沙尘期时痤疮日均门诊量为37人次,范围1~89人次;单污染物模型显示,PM2.5、PMC、PM10均在滞后第6d (lag6)时效应量达到最大值,其浓度每增加10μg/m3,痤疮门诊量的超额危险度(ER)及95%可信区间(95% CI)分别为1.065(95% CI:0.260~1.877)、0.355(95% CI:0.018~0.693)、0.310(95% CI:0.054~0.567),PM2.5对痤疮门诊量的影响最为显著;性别及年龄分层发现,性别分层中PM2.5对女性的影响有统计学意义,其浓度每增加10μg/m3,痤疮门诊量增加1.077(95% CI:0.124~2.039);年龄分层中,0~18岁组受PMC、PM10影响显著,19~24岁组受PM2.5、PM10影响显著,各颗粒物对25~34岁组及≥35岁组效应无统计学意义.在非沙尘期时,PM2.5、PMC、PM10不引起痤疮门诊量增加.双/多污染物模型显示,分别调整其他污染物后,PM2.5、PMC、PM10对痤疮门诊量的影响与单污染物模型类似,仍具有统计学意义.兰州市沙尘天气下大气颗粒物(PM2.5、PMC、PM10)可使痤疮门诊量增加,对女性及青少年影响显著.  相似文献   

11.
为探讨颗粒物对金昌市高血压门急诊就诊人数影响的暴露反应关系,本文收集甘肃省金昌市2012年1月1日~2015年12月31日大气PM10、SO2、NO2数据及2014年1月1日~2015年12月31日大气PM2.5污染物监测数据及同期气象观测数据,同时收集近年金昌市三家综合医院的高血压门急诊日就诊病例.采用广义相加模型,分析不同大气污染物与高血压门急诊日就诊人数的关联性.结果表明,在单污染物模型中,滞后L07d时PM10平均浓度每升高一个IQR,高血压日门急诊人数增加2.30%(95% CI:1.30%~3.32%),L6d时PM2.5平均浓度每升高一个IQR,高血压日门急诊人数增加2.53%(95% CI:1.45%~3.62%).PM10和PM2.5对男性、65岁以上高血压患者门急诊影响更高.SO2和NO2与颗粒物之间存在协同效应,沙尘天气下PM10对高血压门急诊人数的影响由2.30%增加到2.36%,PM2.5的影响由2.53%减少到2.39%.研究得出颗粒物污染对金昌市高血压门急诊就诊人数具有不同程度的影响,其中细颗粒物(PM2.5)的效应更强.  相似文献   

12.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系.   相似文献   

13.
为合理评估PM2.5污染,通过Meta分析,系统回顾已有文献并对中国人群的PM2.5健康效应进行定量评估.在此基础上,综合运用Benmap模型和CGE模型,估计2017年全国PM2.5污染造成的国民经济影响.结果表明,中国PM2.5污染造成的全因早逝、慢性阻塞性肺病(住院)、脑卒中(住院)、缺血性心脏病(住院)、心血管疾病(门诊)、呼吸系统疾病(门诊)OR值分别为1.007(95% CI:1.005,1.009)、1.014(95% CI:1.009,1.019)、1.006(95% CI:1.002,1.011)、1.007(95% CI:1.005,1.010)、1.006(95% CI:1.002,1.010)、1.006(95% CI:1.004,1.008)(per 10μg/m3).2017年,PM2.5污染引起的中国年均劳动损失为2590.34万d,居民额外医疗支出为86.39亿元,造成的经济损失约占当年GDP的1.48%.  相似文献   

14.
于2011年夏季(6月13日—7月2日)和冬季(11月30日—12月12日)在天津市某老年社区采集室内与老年人个体暴露PM2.5样品,分析二者的质量浓度及化学组分特征. 结果表明:夏、冬季室内ρ(PM2.5)分别为(138±103)和(173±136)μg/m3,二者差异显著(P<0.05);冬季室内ρ(PM2.5)、ρ(SO42-)和ρ(OC)显著高于夏季(P<0.05),初步推断是由于冬季燃煤取暖排放的大量颗粒物渗透进入室内所致;冬季室内源(如清扫和吸烟)对某些室内PM2.5组分(Al、Ca和Cd)的贡献较夏季显著. 对个体暴露与室内ρ(PM2.5)的相关性分析发现,二者在夏、冬季均显著相关(P<0.05). 在受试老年人时间活动模式基础上,采用COD(分歧系数)评估室内和个体暴露PM2.5化学组成的相似度,结果显示,室内与个体暴露PM2.5的COD在夏、冬季分别为0.34±0.10和0.37±0.12;冬季受试老年人在交通微环境所处时间较长,致使COD大于0.5的样本数所占比例较夏季高. 室内和老年人个体暴露PM2.5的ρ(OC)/ρ(EC)在夏、冬季均相近,说明二者的碳组分来源相似.   相似文献   

15.
为研究新疆奎独乌(奎屯、独山子、乌苏)区域冬季大气重污染过程的PM2.5污染特征及其成因,于2015年2月4-10日在奎屯、独山子和乌苏三地开展PM2.5样品采集,并对其中的元素、水溶性离子及碳组分进行测试,分析不同污染水平下PM2.5中化学组分的变化规律.结果表明,采样期间奎独乌区域ρ(PM2.5)日均值均超过GB 3095-2012《环境空气质量标准》二级标准(75 μg/m3),2月9日ρ(PM2.5)最高(298.58 μg/m3),超标2.98倍.通过比较PM2.5载带化学组分质量百分比发现,随着污染等级加剧,SO42-、NO3-质量百分比呈逐渐增加的趋势,严重污染时SO42-、NO3-质量百分比分别较轻度污染时增长11.7%、5.5%;NH4+、碳组分及元素组分质量百分比则呈下降趋势,严重污染较轻度污染时分别下降0.7%、9.5%、2.4%;结合采样期间静稳及高湿的气象条件,说明此次重污染由本地污染物累积及二次颗粒物生成所致.随着污染水平的加重,SOR(硫氧化率)及NOR(氮氧化率)的值也在随之增大,说明污染越重大气二次转化程度越高,进一步验证了二次颗粒物是导致此次重污染的原因之一.对不同污染等级PM2.5进行质量重构发现,PM2.5中主要组分均为硫酸盐和OM(有机物),硫酸盐和OM的质量百分比分别在23.0%~34.7%、16.4%~28.7%之间,说明此次重污染过程的主要污染源为燃煤及机动车尾气.   相似文献   

16.
为提高太原市PM2.5预报准确率,更好地服务于空气质量预报预警工作,在华北区域BREMPS(环境气象数值预报系统)预报结果的基础上,结合MR(多元线性回归)、BP(BP神经网络)和MLR(多层递阶)建立10 d的滚动修正模型,并对太原市2017年1月15日—4月15日ρ(PM2.5)进行了修正.结果表明:3种修正模型对BREMPS预报的ρ(PM2.5)小时值和日均值均有不同程度的改善,尤其是MLR修正结果在多项评价指标上明显优于MR和BP,其小时值的RMSE(均方根误差)由原来的42.46 μg/m3降至26.74 μg/m3,重污染和非重污染时段日均值的RMSE分别由未修正前的63.78、43.68 μg/m3降至28.52、21.27 μg/m3,日均值修正结果的基础评分从0.65升至0.88,预报准确率由原来的66.18%升至86.74%.从3种修正模型的构建来看,MR和BP方法对系统平稳状态的修正具有一定的优势,而对系统大幅变化的识别能力较弱,所以在天气变化时临界状态的修正结果误差较大,模型的稳定性较差.研究显示,MLR方法本身具有一定的自适应能力,稳定性和修正结果的整体趋势明显优于MR和BP方法,对太原市空气质量预报改进、重污染天气预警和大气污染防治等方面具有较大的应用价值.   相似文献   

17.
为研究东南亚生物质燃烧对我国的影响,利用NAQPMS(嵌套网格空气质量预报模式系统)模拟分析了2013年3月我国及东南亚污染物质量浓度分布,以及东南亚国家生物质燃烧对我国ρ(PM2.5)的贡献. 结果表明:NAQPMS模式可较好地再现ρ(PM2.5)的时空演变规律. 在我国西南部分地区,东南亚生物质燃烧贡献与当地人为源相当,并且在ρ(PM2.5)较高时尤为明显. 东南亚生物质燃烧对我国的影响主要有两个路径:第一个路径是缅甸向云南等地的输送,对云南ρ(PM2.5)的月均贡献达到20 μg/m3(贡献率为30%),是云南本地生物质燃烧贡献的2倍左右,日均贡献甚至可达到34 μg/m3(贡献率为43%),高于我国人为源贡献(28 μg/m3)和贡献率(36%);第二个路径是老挝和越南向云南与广西交界的输送, 对南宁ρ(PM2.5)的月均贡献为10 μg/m3,日均贡献高值区间为20~40 μg/m3. 我国人为源对东南亚的影响较小,对ρ(PM2.5)月均贡献率在10%以内,主要集中在越南和东南亚南部沿海城市. 东南亚人为源对我国的影响也较小,ρ(PM2.5)月均贡献在2 μg/m3以下. 研究显示,东南亚生物质燃烧对我国特别是西南地区产生的影响不可忽视.   相似文献   

18.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号