首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
为了解京津冀及周边地区“2+26”城市PM2.5和O3复合污染时空分布特征,利用ArcGIS和SPSS软件对2015~2021年京津冀及周边地区“2+26”城市空气质量数据和气象数据进行关联性分析.结果表明:(1) 2015~2021年PM2.5污染持续减缓,污染集中在区域中南部;O3污染呈波动上升趋势,空间分布呈现“西南低,东北高”的格局.季节变化来看,PM2.5浓度主要为:冬季>春季≈秋季>夏季,O3-8h浓度为:夏季>春季>秋季>冬季.(2)“2+26”城市PM2.5超标天数持续下降,O3超标天数波动上升,复合污染日下降趋势显著;PM2.5和O3污染在夏季呈强正相关,相关系数最高达0.52,冬季呈强负相关.(3)对比典型城市臭氧污染时期与复合污染时期气象条件,复合污染发生的温度区间集中在23.7~26.5℃、湿度48%~65%和S~S...  相似文献   

2.
京津冀及周边地区“2+26”城市为京津冀大气污染传输通道城市,也是我国空气污染最严重的区域之一.针对京津冀及周边地区“2+26”城市,利用中国环境监测总站公布的PM2.5、PM10、SO2、NO2、O3和CO数据,对2013—2019年京津冀及周边地区“2+26”城市大气污染特征进行分析,并探讨影响其空气质量变化的因素.研究表明:①2013—2019年京津冀及周边地区“2+26”城市空气质量总体向好,2019年ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(CO)和ρ(NO2)比2013年分别下降了50%、41%、79%、49%和20%,ρ(O3-8 h-90per)(臭氧日最大8 h平均值第90百分位数)比2013年升高了21%.②2013—2019年京津冀及周边地区“2+26”城市重污染天数持续减少,2019年比2013年下降67%,严重污染天数下降尤为明显,降幅达90%.优良天数比例虽然增加,但2016年以后基本稳定在50%左右,没有持续增加的趋势.③ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的最大值均出现在1月,ρ(O3-8 h)(臭氧日最大8 h平均值)的最大值出现在6月.ρ(PM2.5)越高,PM2.5/PM10和SO2/NO2越大,表明二次污染源和燃煤源的贡献越大.④就空间分布而言,ρ(PM2.5)和ρ(PM10)高值区主要集中在区域中南部太行山脉山前的平原地区,低值区主要集中在区域北部.⑤地理位置、气象条件、产业结构、能耗消耗以及减排政策是影响2013—2019年京津冀及周边地区“2+26”城市空气质量变化的重要因素.研究显示,随着大气污染防治减排措施实施的力度逐渐加大,政策影响已成为京津冀及周边地区“2+26”城市空气质量持续改善的最重要手段.   相似文献   

3.
利用京津冀及周边地区大气污染综合立体监测网,在京津冀大气污染传输通道城市(“2+26”城市)开展了PM2.5及其化学组分长期连续观测,并对数据进行深入分析.结果表明:①2017年、2018年和2019年采暖季“2+26”城市PM2.5浓度平均值分别为(84±62)(95±63)和(80±61)μg/m3,达到了京津冀及周边地区2019—2020年秋冬季PM2.5平均浓度同比下降4%的目标;与PM2.5浓度变化相似,其主要化学组分——有机物(OM)浓度最大值出现在2018年采暖季,但二次无机盐(硝酸盐、硫酸盐和铵盐)浓度呈逐年上升趋势,而元素碳、氯盐、地壳物质和微量元素浓度均呈逐年下降趋势.②OM、硝酸盐、硫酸盐、铵盐、地壳物质、元素碳、氯盐和微量元素浓度空间分布存在明显差异.受污染物排放、气象条件以及地形因素的共同影响,PM2.5及其化学组分浓度高值区主要出现在太行山传输通道城市(保定市、石家庄市、邢台市、邯郸市、安阳市和新乡市).③不同空气质量状况下,“2+26”城市PM2.5化学组分浓度年际变化相似,即随空气污染的加重,硝酸盐、硫酸盐和铵盐占PM2.5的比例均上升,而OM占比下降.研究显示,采暖季“2+26”城市空气质量总体得到改善,但需进一步加强对PM2.5中二次组分的科学管控.   相似文献   

4.
为了评估2018年春节期间(2月15—16日)京津冀及周边地区“2+26”城市烟花禁限放措施的效果,采用浓度特征对比、ρ(PM2.5)/ρ(CO)等方法,对“2+26”城市的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)进行分析,并定量估算了除夕夜烟花燃放对ρ(PM2.5)和ρ(SO2)的贡献率.结果表明:“2+26”城市烟花的集中燃放会导致ρ(PM2.5)、ρ(SO2)显著增长,出现以PM2.5为首要污染物的重污染时段,2018年12月16日03:00区域内14个城市ρ(PM2.5)达到重度及以上污染水平,呈区域性污染特征;与2017年同期(1月27—28日)相比,2018年春节期间(2月15—16日)14个城市烟花燃放对ρ(PM2.5)平均贡献量呈下降趋势,其中,淄博市、济南市、北京市降幅最大,分别下降了85.2%、74.6%和65.2%,表明烟花禁限放措施起到了显著的污染削峰作用;与城区相比,周边郊县ρ(PM2.5)显著高于城区,呈“农村包围城市”的现象,说明城区监测点位受到郊县等周边地区烟花燃放的传输影响.研究显示,虽然城区烟花禁限放措施起到了显著的削峰作用,但城区监测点位空气质量仍受到郊县等周边地区烟花燃放的传输影响,导致大气重污染的发生.   相似文献   

5.
从人群健康角度分析我国大气PM2.5和O3污染导致的健康效益时空变化趋势及其影响因素,合理预测未来10年变化,为制定大气污染控制策略及目标提供决策支持.采用相对风险评估模型评估我国338个地级及以上城市2015—2018年大气PM2.5和O3污染导致健康效益的时空变化趋势,参考全球疾病负担2017年的方法估算人口数量、年龄结构、疾病死亡率及污染物浓度等因素对健康效益的贡献率,并设定不同目标情景预测2025年和2030年的健康效益.结果表明:①PM2.5导致的过早死亡人数从2015年的152.21×104人降至2018年的136.82×104人,O3导致的过早死亡人数从2015年的7.99×104人增至2018年的8.27×104人,两种污染物导致的健康效应最高值均出现在“2+26”城市.②人口数量、年龄结构、疾病死亡率和污染物浓度对归因于PM2.5的过早死亡人数变化的贡献率分别为4.83%、30.55%、19.00%及45.62%,对归因于O3的过早死亡人数变化的贡献率分别为17.76%、12.34%、23.41%及46.48%.③基于社会发展情况预测,大气PM2.5浓度2025年需降至40 μg/m3以下、2030年需降至35 μg/m3以下,且大气O3浓度2025年需与2018年持平、2030年比2018年降低4%,两种污染物导致的过早死亡人数才能与2018年接近.研究显示,未来我国应制定更高目标的大气污染控制政策,持续加强PM2.5的污染控制,进一步遏制O3的上升趋势,在生态环境保护上做到方向不变、力度不减,才能充分保障公众健康.   相似文献   

6.
汾渭平原是我国空气污染最严重的区域之一,2018年被列为重点区域. 本研究针对汾渭平原11城市开展PM2.5化学组分连续观测,分析PM2.5浓度和主要化学组分的时空分布规律,并利用PMF模型解析PM2.5污染来源. 结果表明:①2018—2019年秋冬季汾渭平原11城市ρ(PM2.5)平均值为(101.4±65.4)μg/m3,是京津冀及周边地区“2+26”城市的1.1倍. 临汾市ρ(PM2.5)最高(216.8 μg/m3),是汾渭平原的2.1倍. ②2018—2019年秋冬季汾渭平原PM2.5的主要化学组分是有机物、硝酸根离子、地壳物质和硫酸根离子,其中地壳物质占比是京津冀及周边地区的1.6倍. ③受污染物排放、气象条件以及地理位置的影响,汾渭平原PM2.5中有机物、硝酸根离子、地壳物质、硫酸根离子、铵根离子和氯离子的空间分布具有明显的差异性. ④随着污染的加重,硝酸根离子、硫酸根离子和氯离子在PM2.5中的占比均逐渐增加,地壳物质、元素碳、微量元素等与一次排放相关的组分占比随污染加重逐渐减少,表明污染期间燃煤源管控仍需进一步加严,而对扬尘源和机动车等污染源的管控起到了良好的效果. ⑤重污染过程期间,相对湿度增加、风速减小是影响PM2.5浓度上升的客观因素,二次组分以及与燃煤源和生物质燃烧源有关的化学组分的增长是影响PM2.5浓度上升的重要原因,二次源和燃烧源是PM2.5的主要来源. 研究显示,汾渭平原秋冬季PM2.5污染较重,尤其需要关注燃烧源的管控.   相似文献   

7.
许艳玲  薛文博  雷宇 《中国环境科学》2019,39(11):4546-4551
基于WRF-CMAQ模型系统定量分析了气象和排放因素对全国及重点区域PM2.5污染影响程度.从年度特征来看,与2015年相比,2016年、2017年全国空气质量明显改善,PM2.5年均浓度分别下降7%和14%;2016年气象条件总体转好,气象因素和排放因素变化导致全国PM2.5年均浓度下降幅度分别为4%和3%;2017年全国气象条件与2015年相比基本持平,大气污染物排放量下降是PM2.5污染减轻的决定因素.除汾渭平原外,京津冀及周边地区"2+26"城市、长三角、成渝地区空气中的PM2.5年均浓度持续下降;珠三角气象条件变化对PM2.5影响较大,2017年导致PM2.5浓度上升了29%;除汾渭平原外,其他4个重点地区的污染物排放变化导致PM2.5年均浓度下降且2017年的下降幅度进一步加大,说明污染管控措施的环境效益明显.从季节特征来看,气象影响值的区域性差异明显.本文分析方法可用于制定空气质量目标或者评估污染控制方案的环境效果.  相似文献   

8.
“2+26”城市一次污染过程PM2.5化学组分和来源解析研究   总被引:1,自引:0,他引:1  
"2+26"城市颗粒物污染严重,城市间相互影响显著,开展该区域大气颗粒物组分特征及来源解析的研究,能够为大气污染精细化管控及城市间协同控制提供科学支撑.本文对"2+26"城市2016年12月16—23日一次颗粒物污染过程中的PM2.5组分数据进行了分析,使用空气质量模式CAMx-PSAT对PM2.5的来源进行了解析.结果表明,本次污染过程中阳泉的PM2.5最高日均浓度为137μg·m-3,达到中度污染;长治、太原和滨州的PM2.5最高日均浓度分别为235、188、226μg·m-3,达到重度污染;其余城市的PM2.5最高日均浓度值超过250μg·m-3,达到严重污染.PM2.5中含量最多的4种组分为OC、NO-3、SO■、NH+4,平均占比分别为19.38%±4.37%、18.20%±3.14%、16.8...  相似文献   

9.
客观理解京津冀大气污染传输通道城市(“2+26”城市)空气污染时空格局对于区域大气污染联合防治具有重要意义.本研究采用遥感数据反演的PM2.5浓度产品,利用趋势分析法和重心分析法,揭示了京津冀城市大气污染传输通道区2000~2015年大气污染时空格局演化特征.结果表明:(1)区域PM2.5平均浓度整体呈现出太行山脉区域较低,太行山脉以东较高的格局,城镇地区明显高于周边地区.(2)2000~2015年区域PM2.5年均浓度总体呈增加趋势,主要表现在2000~2007年,呈显著增加趋势的面积占全区的88.48%,之后呈稳定状态.(3)区域PM2.5污染重心位于衡水、邢台和德州3市交界处,区域北部大气污染较严重.本研究可为京津冀及周边地区大气污染防治政策制定和措施实施提供参考与支持.  相似文献   

10.
为评估“2+26”城市在疫情期间的减排效果,基于NAQPMS模式和情景模拟的方法,分析了2020年1~3月及疫情前后空气质量特征,对气象、重污染应急减排措施及社会经济活动对空气质量的影响和研究的不确定性进行了分析讨论.结果表明,2020年1~3月,“2+26”城市空气质量级别优良率为59.6%,同比上升10.9%;PM10、PM2.5、SO2、NO2、O3-8h-90per和CO-95per平均浓度分别为108,76,14,36,109μg/m3和2.3mg/m3.疫情期间(1月24日~3月31日) PM10、NO2、PM2.5和CO浓度比疫情前期(1月1~23日)同比降幅明显.气象条件造成沿燕山和太行山城市PM2.5浓度约上升1%~8%.重污染减排促使区域性污染过程减少了2次,“2+26”城市PM2.5季度均值降低约6~26 μg/m3.受春节和疫情综合影响,机动车排放量大幅下降,但焦化、火电等重点行业实际污染排放量变化不大,散煤燃烧对空气质量的负面影响增加.  相似文献   

11.
2018年11月23日-12月4日,京津冀及周边地区"2+26"城市出现了一次长时间、大范围、高强度的复合型大气重污染过程,为揭示区域性重污染过程中多因素的综合作用,利用气象资料、空气质量监测等多源数据以及区域污染特征雷达图,对京津冀及周边地区"2+26"城市此次重污染特征和成因进行分析.结果表明:根据PM2.5/PM10[ρ(PM2.5)/ρ(PM10),下同]可将此次重污染过程划分为4个阶段.第一阶段(2018年11月23-26日)PM2.5/PM10在0.5~1.0内波动,"2+26"城市大气扩散条件转差,一次污染物局地积累及SO2、NOx、NH3等气态污染物在高湿条件下二次转化是污染形成并发展的主要原因;第二阶段(11月27日)PM2.5/PM10突降至0.2左右,"2+26"城市北部受形成于蒙古国的沙尘影响,短时ρ(PM10)快速升高(峰值为818 μg/m3),中南部受形成于内蒙古自治区阿拉善盟的沙尘及上风向PM2.5污染的传输影响,ρ(PM2.5)和ρ(PM10)均较高,维持日均重度污染水平(参照GB 3095-2012《环境空气质量标准》和HJ 633-2012《环境空气质量指数(AQI)技术规定(试行)》);第三阶段(11月28日-12月2日)PM2.5/PM10由0.3逐渐升至0.8,在静稳、高湿的不利气象条件下,一次污染物积累并二次转化,第二阶段残留沙尘中的矿物质对硫酸盐起到催化作用,导致ρ(PM2.5)快速上升,"2+26"城市大部分达日均重度及以上污染;第四阶段(12月3-4日)与第二阶段类似,PM2.5/PM10突降至0.2,"2+26"城市再次受到沙尘天气和区域传输的共同影响,因冷空气持续时间较长,污染被有效清除.研究显示,此次污染过程是气象条件、污染物一次排放和二次转化、区域传输、沙尘天气等多因素综合作用的结果.当静稳、高湿等不利气象条件或沙尘天气出现时,区域应加强对各类污染物排放的管控力度,以降低污染物的一次排放、二次转化以及沙尘和区域传输的共同影响,进而削弱污染严重程度.   相似文献   

12.
散煤燃烧等低矮面源的排放对京津冀等地区采暖季ρ(PM2.5)贡献较大,是重污染天气形成的重要原因之一.针对京津冀地区居民采暖“煤改电”治理工程,以2025年为目标年,以不做任何散煤治理工作为基准情景,同时设计2种不同的控制情景(控制情景1、控制情景2),评估不同控制情景下“煤改电”带来的健康效益.通过综合考量民用散煤占燃煤消费量的比例、散煤PM2.5排放强度,结合京津冀地区各城市PM2.5源解析结果,确定民用散煤对大气环境ρ(PM2.5)的贡献系数,计算空气质量改善情况.在此基础上,综合流行病学相关研究成果,运用环境健康风险评估方法,预测不同控制情景中京津冀地区居民采暖“煤改电”带来的健康效益.结果表明:①京津冀地区在控制情景1中ρ(PM2.5)年均值分别下降4.9、4.9和1.1 μg/m3,在控制情景2中分别下降5.4、5.6和2.0 μg/m3;②在控制情景1、控制情景2中京津冀地区居民采暖“煤改电”带来的健康效益分别为266.55×108和352.34×108元,分别约占京津冀地区2015年GDP的0.38%和0.51%.研究显示,通过实施”煤改电”,京津冀地区可实现的健康效益相当可观,其中,北京市获得的健康效益最大,其次是河北省和天津市.   相似文献   

13.
京津冀地区细颗粒物(PM2.5)浓度改善速度放缓,而臭氧(O3)污染不断加剧,PM2.5和O3的协同控制对于京津冀地区空气质量持续改善十分关键且紧迫. 通过构建京津冀地区城市层面可计算一般均衡模型(CGE),模拟了PM2.5和O3的共同前体物—NOx和VOCs的边际减排成本曲线,进而构建了京津冀地区PM2.5和O3协同控制评估模型,确定了在不同空气质量目标下减排成本最小的NOx和VOCs协同减排方案. 结果表明:减排成本最小的情景下,京津冀各城市PM2.5和O3浓度达到《环境空气质量标准》(GB 3095—2012)二级标准限值时;NOx和VOCs的排放量需较2017年分别降低25%~67%和22%~60%,需要投入的总减排成本为992.9×108元. 研究显示,基于京津冀地区城市政策仿真平台构建的PM2.5和O3协同控制评估模型,可为京津冀地区PM2.5和O3协同控制方案的制定提供参考.   相似文献   

14.
京津冀地区散烧煤与电采暖大气污染物排放评估   总被引:1,自引:0,他引:1       下载免费PDF全文
徐钢  王春兰  许诚  白璞 《环境科学研究》2016,29(12):1735-1742
散烧煤供暖是一种污染物排放量大、一次能源利用效率低的供暖方式,亟需寻找一种新的供暖方式替代散烧煤供暖.在对比评估散烧煤与电煤各种主要污染物排放量的基础上,提出直接电采暖和低温空气源热泵两种替代散烧煤供暖方案,以缓解京津冀地区大气污染,并对改造前后的污染物排放量和技术经济性进行分析;从区域污染物综合减排的战略角度提出对京津冀地区原散烧煤采暖用户进行低温空气源热泵供暖改造和燃煤电厂执行“超净排放”改造两种方案,并对两种方案的污染物减排效果进行了对比.结果表明:单位散烧煤的污染物排放量远高于电煤,其中散烧煤的SO2、NOx、烟尘和综合PM2.5排放因子分别为17.12、2.80、6.37和9.80 g/kg,电煤的SO2、NOx、烟尘和综合PM2.5排放因子分别为0.43、0.85、0.17和0.47 g/kg,散烧煤对综合PM2.5的贡献是电煤的20.9倍;直接电采暖和低温空气源热泵供暖均能有效减少污染物排放量,其中直接电采暖可使每户每年采暖期的SO2、NOx、烟尘和综合PM2.5分别减排66.38、7.15、24.79和36.96 kg,而采用低温空气源热泵的减排量分别为67.79、9.97、25.35和38.52 kg,但直接电采暖方式的一次能源利用效率(仅为33.7%)极低,因此不适合大面积推广;京津冀地区原散烧煤采暖用户在进行低温空气源热泵供暖改造后,其SO2、NOx、烟尘和综合PM2.5年减排量分别为24.47×104、3.60×104、9.15×104和13.91×104 t,燃煤电厂执行“超净排放”改造后相应年减排量分别为1.28×104、4.25×104、1.30×104和2.31×104 t,其中低温空气源热泵供暖改造后的综合PM2.5减排量达到燃煤电厂改造的6.0倍,并且年投资也较燃煤电厂改造低约4×108元.研究显示,采用低温空气源热泵供暖在污染物减排量、技术经济性和实施可行性等方面均具有优势.   相似文献   

15.
采用广义相加模型评估臭氧和细颗粒物(PM2.5)暴露对2008~2017年上海浦东居民慢性阻塞性肺疾病(COPD)死亡的超额危险度(ER)和寿命损失年(YLL)的影响.结果表明:臭氧污染集中在4~6月,PM2.5污染集中在12月、1~2月,10a间臭氧浓度逐年增加,PM2.5有小幅下降;在最大滞后效应下,臭氧每增加10μg/m3,ER和YLL分别为1.34%(95% CI:0.57%~2.12%)和54.98(95% CI:16.36~106.41)人·a;PM2.5每增加10μg/m3,两者分别为2.66%(95% CI:1.54%~3.79%)和130.92(95% CI:42.47~274.28)人·a;臭氧对男性和<85岁人群影响显著,PM2.5对女性和385岁人群影响显著;暖季时臭氧暴露相关的COPD死亡风险更高,冷季时PM2.5暴露相关的COPD死亡风险更高.臭氧和PM2.5致COPD死亡的影响可能因气温水平而异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号