首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.  相似文献   

2.
    
Nitro-aromatic compounds (NACs) are among the major components of brown carbon (BrC) in the atmosphere, causing negative impacts on regional climate, air quality, and ecological health. Due to the extensive origins, it is still a challenge to figure out the contributions and originating regions for different sources of atmospheric NACs. Here, field observations on fine particulate NACs were conducted at a coastal rural area in Qingdao, China in the winter of 2018 and 2019. The mean total concentrations of fine particulate nitro-aromatic compounds were 125.0 ± 89.5 and 27.7 ± 21.1 ng/m3 in the winter of 2018 and 2019, respectively. Among the measured eleven NACs, nitrophenols and nitrocatechols were the most abundant species. Variation characteristics and correlation analysis showed that humidity and anthropogenic primary emissions had significant influences on the NAC abundances. In this study, two tracing methods of the improved spatial concentration weighted trajectory (SCWT) model and the receptor model of positive matrix factorization (PMF) were combined to comprehensively understand the origins of NACs in fine particles at coastal Qingdao. Four major sources were identified, including coal combustion, biomass burning, vehicle exhaust, and secondary formation. Surprisingly, coal combustion was responsible for about half of the observed nitro-aromatic compounds, followed by biomass burning (∼30%). The results by SCWT demonstrated that the coal combustion dominated NACs mainly originated from the Shandong peninsula and the areas to the north and southwest, while those dominated by biomass burning primarily came from local Qingdao and the areas to the west.  相似文献   

3.
    
Mercury (Hg) in rice is drawing mounting concern since methylmercury (MeHg) was found capable of accumulating in rice. In-vitro bioaccessibility is a feasible and reliable method to assess the health effects of Hg in rice and has been utilized in a number of studies. This study was done to investigate the impact of cultivar, planting location, and cooking on the total mercury (THg) and MeHg bioaccessibility of rice, for which multiple statistical analysis methods were used to analyze the significance of their effects. The THg concentrations of rice samples taken from non-Hg contaminated areas of China were all below 15 ng/g and their MeHg concentrations were below 2 ng/g. Cooking could significantly reduce the MeHg bioaccessibility of rice because the MeHg was mainly combined with protein and the protein will be denatured during the cooking process, and then the denatured MeHg is difficult to be dissolved into the liquid phase. Indica- and japonica-type rice cultivars did not show significant differentiation in either the concentration of Hg or its bioaccessibility. However, the glutinous rice type differed significantly from the above rice types, and it showed greater bioaccessibility of THg and MeHg due to its distinct protein contents and starch properties. Planting location can affect the Hg concentration in rice and THg bioaccessibility but has a limited impact on MeHg bioaccessibility. Based on these results, two macro factors (rice cultivar, planting location) are presumed to impact Hg bioaccessibility by how they affect micro factors (i.e., Hg forms).  相似文献   

4.
         下载免费PDF全文
Episodes of fine-particulate matter(PM2.5) pollution are a widespread and common occurrence in China, and have potentially serious implications for human health. Meteorological conditions play an important role in air quality and influence the formation of regional air pollution episodes. This study applied a new classification method and daily PM2.5 concentration data to(a) evaluate different levels of air pollution in the Sichuan–Chongqing region between 2015 and 2017, an...  相似文献   

5.
         下载免费PDF全文
Particulate matter (i.e., PM1.0 and PM2.5), considered as the key atmospheric pollutants, exerts negative effects on visibility, global climate, and human health by associated chemical compositions. However, our understanding of PM and its chemical compositions in Beijing under the current atmospheric environment is still not complete after witnessing marked alleviation during 2013–2017. Continuous measurements can be crucial for further air quality improvement by better characterizing PM pollution and chemical compositions in Beijing. Here, we conducted simultaneous measurements on PM in Beijing during 2018–2019. Results indicate that annual mean PM1.0 and PM2.5 concentrations were 35.49 ± 18.61 µg/m3 and 66.58 ± 60.17 µg/m3, showing a positive response to emission controls. The contribution of sulfate, nitrate, and ammonium (SNA) played an enhanced role with elevated PM loading and acted as the main contributors to pollution episodes. Discrepancies observed among chemical species between PM1.0 and PM2.5 in spring suggest that sand particles trend to accumulate in the range of 1–2.5 µm. Pollution episodes occurred accompanied with southerly clusters and high formation of SNA by heterogeneous reactions in summer and winter, respectively. Results from positive matrix factorization (PMF) combined with potential source contribution function (PSCF) models showed that potential areas were seasonal dependent, secondary and vehicular sources became much more important compared with previous studies in Beijing. Our study presented a continuous investigation on PM and sources origins in Beijing, which provides a better understanding for further emission control as well as a reference for other cities in developing countries.  相似文献   

6.
    
Understanding the aerosol vertical characterization is of great importance to both climate and atmospheric environment. This study investigated the variations of aerosol profiles over eight regions of interest in China after clean air policy (2013-2019) and discussed the drivers of the vertical aerosol structure, using observations from active satellite measurements (CALIPSO). From the annual variation, the amplitude of extinction coefficient profiles showed a decreasing trend with fluctuations, and the maximum was 0.21 km−1 in Beijing-Tianjin-Hebei (JJJ). For regions suffered from air pollution, the variation was greatest below 0.45 km, while it was between 1-1.5 km for Sichuan Basin. The correlation coefficient between the relative humidity (RH) and the extinction coefficient indicated that the increase of RH inhibited the decrease of the extinction coefficient in the Yangtze River Delta. In most regions, the main aerosol subtypes were polluted dust and polluted continental, but they were coarser in JJJ and North West. The frequency of concurrency of dust and polluted dust aerosols decreased in JJJ, but polluted continental aerosols occurred more frequently. Further, the aerosol extinction coefficient profiles under different pollution conditions showed that it changed most during heavy pollution periods in JJJ, especially in 2017, with a significant aerosol loading between ∼700 and 1200 m. The atmospheric reanalysis data revealed that the weak convergence at low level and the divergence at high level supported the upward transport of aerosols in 2017. Overall, the differences in divergence allocation, RH, and wind filed were the main meteorological drivers.  相似文献   

7.
    
Nitrocellulose membrane (NCM) can produce hydroxyl radicals under illumination, which promotes the oxidative degradation of organic pollutants. In this paper, NCM was used to oxidize bisphenol A (BPA) under simulated sunlight. The effects of pH, temperature, light intensity, anion and cation on the degradation of BPA were analyzed. The photodegradation process of BPA was discussed. The optimal photolysis rate was 0.031 min?1 when the temperature was 30°C, the light intensity was 2.67 × 104 Lux, and the pH value was 9.0. The alkaline environment, temperature and light intensity can promote the photodegradation of BPA. Except for nitrate ions, anions and cations can inhibit the photodegradation of BPA. Compared with cations, anions have a greater inhibitory effect on BPA degradation. The degradation products of BPA by NCM were analyzed by gas chromatographic/mass. This study may provide useful information for the BPA degradation by NCM in complex water samples.  相似文献   

8.
    
Ambient carbonyls were continuously observed in the field during a heavy ozone pollution episode in Chengdu, China from August 4 to August 19, 2019, and the pollution characteristics, atmospheric photochemical reactivity, human health risk, and sources of carbonyls were analyzed. Fifteen carbonyls were quantified with average total mixing ratios of 20.38 ppbv Formaldehyde(9.86 ppbv), acetone(4.41 ppbv), and acetaldehyde(3.57 ppbv) were the three most abundant carbonyls. During the heavy ozone po...  相似文献   

9.
    
Wet purification technology for nonferrous metal smelting flue gas is important for mercury removal; however, this technology produces a large amounts of spent scrubbing solution that contain mercury. The mercury in these scrubbing solutions pose a great threat to the environment. Therefore, this research provides a novel strategy for removing and recycling mercury from the scrubbing solution, which is significant for decreasing mercury pollution while also allowing for the safe disposal of wastewater and a stable supply of mercury resources. Some critical parameters for the electrochemical reduction of mercury were studied in detail. Additionally, the electrodeposition dynamics and electroreduction mechanism for mercury were evaluated. Results suggested that over 92.4% of mercury could be removed from the scrubbing solution in the form of a Hg-Cu alloy under optimal conditions within 150 min and with a current efficiency of approximately 75%. Additionally, mercury electrodeposition was a quasi-reversible process, and the controlled step was the mass transport of the reactant. A pre-conversion step from Hg(Tu)42+ to Hg(Tu)32+ before mercury electroreduction was necessary. Then, the formed Hg(Tu)32+ on the cathode surface gained electrons step by step. After electrodeposition, the mercury in the spent cathode could be recycled by thermal desorption. The results of the electrochemical reduction of mercury and subsequent recycling provides a practical and easy-to-adopt alternative for recycling mercury resources and decreasing mercury contamination.  相似文献   

10.
    
To evaluate the effectiveness of emission control regulations designed for reducing air pollution, chemically resolved PM2.5 data have been collected across Canada through the National Air Pollution Surveillance network in the past decade. 24-hr time integrated PM2.5 collected at seven urban and two rural sites during 2010-2016 were analyzed to characterize geographical and seasonal patterns and associated potential causes. Site-specific seven-year mean gravimetric PM2.5 mass concentrations ranged from 5.7 to 9.6 µg/m3. Seven-year mean concentrations of SO42?, NO3?, NH4+, organic carbon (OC), and elemental carbon (EC) were in the range of 0.68 to 1.6, 0.21 to 1.5, 0.27 to 0.71, 1.1 to 1.9, and 0.37 to 0.71 µg /m3, accounting for 10.8%-18.1%, 3.7%-16.7%, 4.7%-7.4%, 18.4%-21.0%, and 6.4%-10.6%, respectively, of gravimetric PM2.5 mass. PM2.5 and its five major chemical components showed higher concentrations in southeastern Canada and lower values in Atlantic Canada, with the seven-year mean ratios between the two regions being on the order of 1.7 for PM2.5 and 1.8-7.1 for its chemical components. When comparing the concentrations between urban and rural sites within the same region, those of SO42? and NH4+ were comparable, while those of NO3?, OC, and EC were around 20%, 40%-50%, and 70%-80%, respectively, higher at urban than rural sites, indicating the regional scale impacts of SO42? and NH4+ and effects of local sources on OC and EC. Monthly variations generally showed summertime peaks for SO42? and wintertime peaks for NO3?, but those of NH4+, OC, and EC exhibited different seasonality at different locations.  相似文献   

11.
    
Benzene homologues are important chemical precursors to the formation of ground-level ozone and secondary organic aerosol(SOA) in the atmosphere,in addition,some toxic species are harmful to human health.Strict countermeasures have been taken to fight air pollution since 2013,and total amount control of volatile organic compounds is being promoted in China at present.Therefore,it is important to understand the pollution situation and the control status of ambient benzene homologues in China.This...  相似文献   

12.
    
Ultrafine particles represent a growing concern in the public health community but their precise role in many illnesses is still unknown. This lack of knowledge is related to the experimental difficulty in linking their biological effects to their multiple properties, which are important determinants of toxicity. Our aim is to propose an interdisciplinary approach to study fine(FP) and ultrafine(UFP) particles, generated in a controlled manner using a mini CAST(Combustion Aerosol Standard) soot ...  相似文献   

13.
    
Straw pellets are widely promoted and expected to be a cleaner alternative fuel to unprocessed crop residues and raw coal in rural China.However,the effectiveness of these dissemination programs is not well evaluated.In this?eld study,emission characteristics of burning straw pellets,raw coal,and unprocessed corn cobs in heating stoves were investigated in a pilot village in Northeast China.Emission measurements covering the whole combustion cycle (ignition,?aming,and smoldering phases) shows th...  相似文献   

14.
         下载免费PDF全文
Cross-boundary transport of air pollution is a difficult issue in pollution control for the North China Plain. In this study, an industrial district (Shahe City) with a large glass manufacturing sector was investigated to clarify the relative contribution of fine particulate matter (PM2.5) to the city's high levels of pollution. The Nest Air Quality Prediction Model System (NAQPMS), paired with Weather Research and Forecasting (WRF), was adopted and applied with a spatial resolution of 5 km. During the study period, the mean mass concentrations of PM2.5, SO2, and NO2 were observed to be 132.0, 76.1, and 55.5 μg/m3, respectively. The model reproduced the variations in pollutant concentrations in Shahe at an acceptable level. The simulation of online source-tagging revealed that pollutants emitted within a 50-km radius of downtown Shahe contributed 63.4% of the city's total PM2.5 concentration. This contribution increased to 73.9±21.2% when unfavorable meteorological conditions (high relative humidity, weak wind, and low planetary boundary layer height) were present; such conditions are more frequently associated with severe pollution (PM2.5 ≥ 250 μg/m3). The contribution from Shahe was 52.3±21.6%. The source apportionment results showed that industry (47%), transportation (10%), power (17%), and residential (26%) sectors were the most important sources of PM2.5 in Shahe. The glass factories (where chimney stack heights were normally < 70 m) in Shahe contributed 32.1% of the total PM2.5 concentration in Shahe. With an increase in PM2.5 concentration, the emissions from glass factories accumulated vertically and narrowed horizontally. At times when pollution levels were severe, the horizontally influenced area mainly covered Shahe. Furthermore, sensitivity tests indicated that reducing emissions by 20%, 40%, and 60% could lead to a decrease in the mass concentration of PM2.5 of of 12.0%, 23.8%, and 35.5%, respectively.  相似文献   

15.
    
Agriculture-oriented cities in Northeastern China have experienced frequent atmospheric pollution events. Deeper understandings of the pollution characteristics, haze causes and effects of management on local air quality are crucial for conducting integrated management approaches for the sustainable development of agriculture-oriented cities. Taking a typical agriculture-dominant city( i.e., Suihua) in Northeast China, we analyzed in detail the characteristics and causes of atmospheric pollution...  相似文献   

16.
    
Vivianite is often found in reducing environments rich in iron and phosphorus from organic debris degradation or phosphorus mineral dissolution. The formation of vivianite is essential to the geochemical cycling of phosphorus and iron elements in natural environments. In this study, extracellular polymeric substances (EPS) were selected as the source of phosphorus. Microcosm experiments were conducted to test the evolution of mineralogy during the reduction of polyferric sulfate flocs (PFS) by Shewanella oneidensis MR-1 (S. oneidensis MR-1) at EPS concentrations of 0, 0.03, and 0.3 g/L. Vivianite was found to be the secondary mineral in EPS treatment when there was no phosphate in the media. The EPS DNA served as the phosphorus source and DNA-supplied phosphate could induce the formation of vivianite. EPS impedes PFS aggregation, contains redox proteins and stores electron shuttle, and thus greatly promotes the formation of minerals and enhances the reduction of Fe(III). At EPS concentration of 0, 0.03, and 0.3 g/L, the produced HCl-extractable Fe(II) was 107.9, 111.0, and 115.2 mg/L, respectively. However, when the microcosms remained unstirred, vivianite can be formed without the addition of EPS. In unstirred systems, the EPS secreted by S. oneidensis MR-1 could agglomerate at some areas, resulting in the formation of vivianite in the proximity of microbial cells. It was found that vivianite can be generated biogenetically by S. oneidensis MR-1 strain and EPS may play a key role in iron reduction and concentrating phosphorus in the oligotrophic ecosystems where quiescent conditions prevail.  相似文献   

17.
    
The migration mechanisms, sources, and environmental risks of 29 legacy and emerging perfluorinated and polyfluoroalkyl species present in an oxidation pond (Ya'Er Lake) were investigated for treating sewage based on the analysis of their occurrence and distribution. The concentration of per- and polyfluoroalkyl substances (PFAS) in pond area was between 0.30 and 63.2 ng/g dw (dry weight), with the overall average concentration of 8.00 ng/g dw. Notably, the PFAS concentrations in the surface sediments near the sewage outlet in Pond-1 (50.2 ng/g dw) and Pond-5 (average 15.1 ng/g dw) were 1–2 orders of magnitude higher than those in other areas. In general, the legacy PFAS, i.e., perfluorooctane sulfonic acid was considered to be the major pollutant in the polluted area, on average, accounting for 73.0% of the total concentration of PFAS pollutants. By evaluating the regional distribution of different PFAS homologs, the short-chain PFAS pollutants with lower Kow were found to migrate farther in both horizontal and vertical directions. The sewage outlets in Pond-1 and Pond-5 are the main pollution sources in polluted area and the emerging PFAS pollutants in Pond-5 have replaced the legacy PFAS pollutants as the main pollutants. Based on positive matrix factorization analysis, three main industrial sources of PFAS pollutants in the study area were identified: protective coating, fire-fighting, and food packaging sources. Moreover, the environmental risk assessment results showed that most study areas exhibited medium environmental risk (0.01 ≤ Risk quotient (RQ) < 1), indicating that the ecological environment risks in this area need further attention.  相似文献   

18.
    
The COVID-19 pandemic has escalated into one of the largest crises of the 21st Century. The new SARS-CoV-2 coronavirus, responsible for COVID-19, has spread rapidly all around the world. The Spanish Government was forced to declare a nationwide lockdown in view of the rapidly spreading virus and high mortality rate in the nation. This study investigated the impact of short-term lockdown during the period from March 15th to April 12th 2020 on the atmospheric levels of CO, SO2, PM10, O3, and NO2 over 11 representative Spanish cities. The possible influence of several meteorological factors (temperature, precipitation, wind, sunlight hours, minimum and maximum pressure) on the pollutants' levels were also considered. The results obtained show that the 4-week lockdown had significant impact on reducing the atmospheric levels of NO2 in all cities except for the small city of Santander as well as CO, SO2, and PM10 in some cities, but resulted in increase of O3 level.  相似文献   

19.
    
Mineral particles are ubiquitous in the atmosphere and exhibit an important effect on the photooxidation of volatile organic compounds (VOCs). However, the role of mineral particles in the photochemical oxidation mechanism of VOCs remains unclear. Hence, the photooxidation reactions of acrolein (ARL) with OH radical (OH) in the presence and absence of SiO2 were investigated by theoretical approach. The gas-phase reaction without SiO2 has two distinct pathways (H-abstraction and OH-addition pathways), and carbonyl-H-abstraction is the dominant pathway. In the presence of SiO2, the reaction mechanism is changed, i.e., the dominant pathway from carbonyl-H-abstraction to OH-addition to carbonyl C-atom. The energy barrier of OH-addition to carbonyl C-atom deceases 21.33 kcal/mol when SiO2 is added. Carbonyl H-atom of ARL is occupied by SiO2 via hydrogen bond, and carbonyl C-atom is activated by SiO2. Hence, the main product changes from H-abstraction product to OH-adduct in the presence of SiO2. The OH-adduct exhibits a thermodynamic feasibility to yield HO2 radical and carboxylic acid via the subsequent reactions with O2, with implications for O3 formation and surface acidity of mineral particles.  相似文献   

20.
         下载免费PDF全文
Antibiotics are poorly metabolized, and can enter the environment via human waste streams, agricultural run-off and pharmaceutical effluent. We consequently expect to see a concentration gradient of antibiotic compounds radiating from areas of human population. Such antibiotics should be thought of as pollutants, as they can accumulate, and have biological effects. These antibiotic pollutants can increase rates of mutation and lateral transfer events, and continue to exert selection pressure even at sub-inhibitory concentrations. Here, we conducted a literature survey on environmental concentrations of antibiotics. We collated 887 data points from 40 peer-reviewed papers. We then determined whether these concentrations were biologically relevant by comparing them to their minimum selective concentrations, usually defined as between 1/4 and 1/230 of the minimum inhibitory concentration. Environmental concentrations of antibiotics surveyed often fall into this range. In general, the antibiotic concentrations recorded in aquatic and sediment samples were similar. These findings indicate that environmental concentrations of antibiotics are likely to be influencing microbial ecology, and to be driving the selection of antibiotic resistant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号