首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Contaminated water and soil at active or abandoned munitions plants is a serious problem since these compounds pose risks to human health and can be toxic to aquatic and terrestrial life. Our objective was to determine if zero-valent iron (Fe(0)) could be used to promote remediation of water and soil contaminated with 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). As little as 1% Fe(0) (w/v) removed 70 mg TNT litre(-1) from aqueous solution within 8 h and removed 32 mg RDX litre(-1) within 96 h. Treating slurries (1:5 soil:water) of highly contaminated soil (5200 mg TNT and 6400 mg RDX kg(-1) soil) from the former Nebraska Ordnance Plant (NOP) with 10% Fe(0) (w/w soil) reduced CH(3)CN-extractable TNT and RDX concentrations below USEPA remediation goals (17.2 mg TNT and 5.8 mg RDX kg(-1)). Sequential treatment of a TNT-contaminated solution (70 mg TNT litre(-1) spiked with (14)C-TNT) with Fe(0) (5% w/v) followed by H(2)O(2) (1% v/v) completely destroyed TNT and removed about 94% of the (14)C from solution, 48% of which was mineralized to (14)CO(2) within 8 h. Fe(0)-treated TNT also was more susceptible to biological mineralization. Our observations indicate that Fe(0) alone, Fe(0) followed by H(2)O(2), or Fe(0) in combination with biotic treatment can be used for effective remediation of munitions-contaminated water and soil.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances which are resistant to environmental degradation due to their highly hydrophobic nature. Soils contaminated with PAHs pose potential risks to human and ecological health, therefore concern over their adverse effects have resulted in extensive studies on their removal from contaminated soils. The main purpose of this study was to compare experimental results of PAHs removal, from a natural certified soil polluted with PAHs, by biological methods (using bioaugmentation and biostimulation in a solid-state culture) with those from supercritical fluid extraction (SFE), using supercritical ethane as solvent. The comparison of results between the two methods showed that maximal removal of naphthalene, acenaphthene, fluorene, and chrysene was performed using bioremediation; however, for the rest of the PAHs considered (fluoranthene, pyrene, and benz(a)anthracene) SFE resulted more efficient. Although bioremediation achieved higher removal ratios for certain hydrocarbons and takes advantage of the increased rate of natural biological processes, it takes longer time (i.e. 36 d vs. half an hour) than SFE and it is best for 2-3 PAHs rings.  相似文献   

3.
A novel process for removal of nitrogen oxides (NOx) from flue gases with iron filings reduction following complex absorption in iron-ethylenediaminetetraacetic acid aqueous solution is proposed. The reaction mechanism involved in the process is discussed briefly. The parameters influencing the process, including the concentration of ferrous chelates, initial pH, amount of iron filings, temperature, flow rate of the flue gas, and inlet nitric oxide concentration and oxygen content of the flue gas, are researched in detail. The optimal NOx removal conditions are established. The regeneration and circular utilization of the absorption solution also is studied.  相似文献   

4.
磷作为一种重要的元素而被广泛应用于农业与工业中,然而磷的过量排放已成为许多封闭半封闭水体富营养化和沿海赤潮频繁发生的原因之一.去除水体中的营养盐特别是磷酸盐,是有效控制水体富营养化的关键.广州市某河涌水含总磷2.6 mg/L,采用并选择DS离子交换树脂对水中磷进行动态吸附和去除,可使水中的磷降至排放标准以内,解决河涌水含磷高的富营养化问题.由DS树脂所吸附的磷,通过淋洗可得到含磷富集液,使磷从水体中完全分离出来并获得回收.DS树脂的再生能力强,经6次吸附-解吸-再生后,树脂对河涌水中磷的去除率仍可达到90%以上.  相似文献   

5.
Some researches studied the removal of steroid estrogens by enzymatic treatment, however none verified the residual estrogenicity after the enzymatic treatment at environmental conditions. In this study, the residual estrogenic activities of the key natural and synthetic steroid estrogens were investigated following enzymatic treatment with horseradish peroxidase (HRP) and laccase from Trametes versicolor. Synthetic water and municipal wastewater containing environmental concentrations of estrone, 17beta-estradiol, estriol, and 17alpha-ethinylestradiol were treated. Liquid chromatography-mass spectrometry analysis demonstrated that the studied steroid estrogens were completely oxidized in the wastewater reaction mixture after a 1-h treatment with either HRP (8-10 U ml(-1)) or laccase (20 U ml(-1)). Using the recombinant yeast assay, it was also confirmed that both enzymatic treatments were very efficient in removing the estrogenic activity of the studied steroid estrogens. The laccase-catalyzed process seemed to present great advantages over the HRP-catalyzed system for up-scale applications for the treatment of municipal wastewater.  相似文献   

6.
Removal of NOM from drinking water: Fenton's and photo-Fenton's processes   总被引:4,自引:0,他引:4  
Murray CA  Parsons SA 《Chemosphere》2004,54(7):1017-1023
The control of disinfection by-products during water treatment is primarily undertaken by reducing the levels of precursor species prior to chlorination. As many waters contain natural organic matter at levels of up to 15 mgl(-1) there is a need for a range of control methods to support conventional coagulation. Two such processes are the Fenton and photo-Fenton's processes and in this paper they are assessed for their potential to remove NOM from organic rich waters. The performance of both processes is shown to be depentent on pH, Fe: H2O2 ratio as well as Fe2+ dose. Under optimum conditions both processes achieved greater than 90% removal of DOC and UV254 absorbance. This removal lead to the trihalomethane formation potential of the water being reduced from 140 to below 10 microgl(-1), well below UK and US standards.  相似文献   

7.
Ozcan A  Sahin Y  Oturan MA 《Chemosphere》2008,73(5):737-744
The removal of a carbamate herbicide, propham, from aqueous solution has been carried out by the electro-Fenton process. Hydroxyl radical, a strong oxidizing agent, was generated catalytically and used for the oxidation of propham aqueous solutions. The degradation kinetics of propham evidenced a pseudo-first order degradation. The absolute rate constant of second order reaction kinetics between propham and ()OH was determined as (2.2+/-0.10)x10(9)m(-1)s(-1). The mineralization of propham was followed by the organic carbon (TOC) removal. The optimal Fe(3+) concentration was found as 0.5mM at 300mA. The 94% of initial TOC of 0.25mM propham solution was removed in 8h at the optimal conditions by using the cathode area to solution volume ratio of 3.33dm(-1). The maximum mineralization current efficiency values were obtained at 60mA in the presence of 0.5mM Fe(3+). During the electro-Fenton treatment, several degradation products were formed. These intermediates were identified by using high performance liquid chromatography, liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry and ion chromatography analysis. The identified by-products allowed proposing a pathway for the propham mineralization.  相似文献   

8.
鉴于高炉碱矿渣具有高吸附性能,而污水处理中应用到的纳米零价铁(nZVI)在单独使用时具有局限性,因此,利用高炉碱矿渣作为载体,制备了6种不同质量比的高炉碱矿渣负载型纳米零价铁材料(碱矿渣-nZVI),探究了5种不同用量的材料在不同反应时间和反应温度下对水中氮磷的吸附去除效果.结果 表明:碱矿渣与nZVI的最佳反应质量比...  相似文献   

9.
Environmental Science and Pollution Research - For the photocatalytic degradation of antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT), several TiO2-based composites have been prepared in MWCNT...  相似文献   

10.
During the last decade, nanofiltration (NF) made a breakthrough in drinking water production for the removal of pollutants. The combination of new standards for drinking water quality and the steady improvement of the nanofiltration process have led to new insights, possible applications and new projects on lab-scale, pilot scale and industrial scale. This paper offers an overview of the applications in the drinking water industry that have already been realised or that are suggested on the basis of lab-scale research. Applications can be found in the treatment of surface water as well as groundwater. The possibility of using NF for the removal of hardness, natural organic material (NOM), micropollutants such as pesticides and VOCs, viruses and bacteria, salinity, nitrates, and arsenic will be discussed. Some of these applications have proven to be reliable and can be considered as known techniques; other applications are still studied on laboratory scale. Modelling is difficult due to effects of fouling and interaction between different components. The current insight in the separation mechanisms will be briefly discussed.  相似文献   

11.
Emissions of the fragrance compound OTNE (Iso-E-Super) to surface waters have been investigated by means of a combined analytical (measurements) and modeling approach. The compound is an ingredient in many household products and is emitted into surface waters almost exclusively via the wastewater pathway. Measured concentrations of OTNE in surface waters of the Ruhr river catchment basin ranged from 30 to 100 ng L(-1), and were thus in the same order of magnitude as the polycyclic musks AHTN and HHCB. The geo-referenced exposure model GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) was used to simulate OTNE concentrations in the Ruhr river basin. Model results could plausibly explain monitoring data at all sampling sites when considering the discharge conditions during the sampling period and specific local characteristics. According to the model, approximately half of the total OTNE emissions into the Ruhr river basin are transferred from surface water into the atmosphere and the sediment. Volatilization from lakes was identified as the major removal process of the fragrance compound OTNE. To identify possible regional differences, samples from the Danube in Hungary were also analysed. The OTNE concentrations were in the same order of magnitude (29-810 ng L(-1)) as in the Ruhr catchment, but exhibited higher spatial variability.  相似文献   

12.
As arsenic removal becomes a global concern, the development of removal processes for arsenic treatment is still a major challenge. With regard to environmental compatibility and cheapness, chitosan and chitosan derivatives are considered as a promising removal technology for arsenic. Chitosan and chitosan derivatives possess the properties of low cost and good sorption on the arsenic removal. The present review is concerned about the present understanding of the mechanisms involved in sorption processes. Further on, detailed discussions are given of the effects of various factors on the performance of chitosan and chitosan derivatives in arsenic treatment processes. Finally, special attention is paid to the future challenges of chitosan and chitosan derivatives utilized for industrial arsenic treatment.  相似文献   

13.
Zerovalent iron powder (ZVI or Fe0) and nanoparticulate ZVI (nZVI or nFe0) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe0 and nFe0. Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the β-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L−1) undergo first-order decay with half-lives of about 60.3 ± 3.1 and 43.5 ± 2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t1/2 of about 11.5 ± 0.6 and 11.2 ± 0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe0 consumption, shortening the service life of Fe0 treatment systems.  相似文献   

14.
Wang L  Wang S  Yuan Q 《Chemosphere》2007,69(11):1689-1694
A mathematical model describing the rate of carbon disulfide (CS2) removal due to coupled reactions has been developed. Kinetic studies were carried out in a fixed bed reactor under atmospheric pressure and a range of temperatures (85–125 °C). The effects of flow rate, CS2 inlet concentration, temperature and relative humidity were analyzed. A kinetic model based on axial dispersion, external and internal mass-transfer resistances, as well as effects of S deposition on the inner-face of the catalyst was in agreement with the CS2 experimental breakthrough curves. The mathematical model can be used for process design and scale up of similar systems.  相似文献   

15.
《Chemosphere》2008,70(11):1689-1694
A mathematical model describing the rate of carbon disulfide (CS2) removal due to coupled reactions has been developed. Kinetic studies were carried out in a fixed bed reactor under atmospheric pressure and a range of temperatures (85–125 °C). The effects of flow rate, CS2 inlet concentration, temperature and relative humidity were analyzed. A kinetic model based on axial dispersion, external and internal mass-transfer resistances, as well as effects of S deposition on the inner-face of the catalyst was in agreement with the CS2 experimental breakthrough curves. The mathematical model can be used for process design and scale up of similar systems.  相似文献   

16.
Typha latifolia plants, commonly known as cattails, were grown in a mixture of mature sewage sludge compost, commercial compost and perlite (2:1:1 by volume). Four Groups (A, B, C and D) were irrigated (once every two weeks) with a solution containing different concentrations of Cu, Ni, and Zn, where in the fifth (group M) tap water was used. At the end of the 10 weeks experimental period substrate and plants were dried, weighed and analysed for heavy metals. The amounts of all three metals removed from the irrigation solution, were substantial. In the roots and leaves/stems of T. latifolia the mean concentration of Zn reached values of 391.7 and 60.8 mg/kg of dry weight (d.w.), respectively. In the substrate of Group D all three metals recorded their highest mean concentrations of 1156.7 mg/kg d.w. for Cu, 296.7 mg/kg d.w. for Ni and 1231.7 mg/kg d.w. for Zn. Linear correlation analyses suggested that there was a linear relationship between the concentration of metals in the solutions and the concentration of metals in the substrates at the end of the experiment. The percentage removal of the metals in the substrate was large, reaching 100% for Cu and Zn in some groups and almost 96% for Ni in group D. The total amount of metals removed by the plants was considerably smaller than that of the substrate, due mainly to the small biomass development. A single factor ANOVA test (5% level) indicated that the build up in the concentration of metals in the roots and the leaves/stems was due to the use of metaliferous water solution and not from the metals pre-existing in the substrate. The contribution of the plants (both roots and leaves/stems) in the removing ability of the system was less than 1%.  相似文献   

17.
为避免因FAS释放过量有机物和氮而产生的潜在不利影响,分析了以给水厂铁铝泥(FAS)构建过滤柱处理富营养化河水的特征与机制,研究了以厌氧热处理改性后的FAS作为辅助基质(2%)构建过滤柱。结果表明:在对其他性质无影响的情况下,FAS的添加显著提高了过滤柱对水体中磷的去除率,促使出水磷浓度在整个运行期间小于0.01 mg·L-1;被FAS吸附的磷主要以NaOH提取态、HCl可提取态和残渣态存在。高通量测序分析结果表明,FAS的添加促使过滤柱中富集了Rhodoplanes、Sulfuritalea、Nitrospira、Leucobacter、Geobacter、Dechloromonas等有助于生物地球化学循环和复合污染控制的菌群。FAS作为辅助基质构建过滤柱可有效控制富营养化河水中磷污染。  相似文献   

18.
Environmental Science and Pollution Research - In this research paper, potassium-activated geopolymer cubes (GeoC) fabricated from waste coal fly ash with low-temperature calcination were...  相似文献   

19.
The removal of pyrene and benzo(a)pyrene from contaminated water by sequential and simultaneous ozonation-bioremediation techniques was investigated. During the sequential treatment, ozonation using 0.5 or 2.5 mg/L ozone was used as a pretreatment process, whereas, during the simultaneous treatment process, ozonation of hydrocarbon-contaminated water at a predetermined duration using 0.5 mg/L ozone was made in the presence of microbial biomass. Ozonation was not beneficial for the removal of pyrene. However, despite a decreased specific biodegradation rate, ozonation improved the overall elimination of benzo(a)pyrene during both treatment processes. The overall removal of benzo(a)pyrene increased from 23 to 91% after exposure of the water to 0.5 mg/L ozone for 30 minutes during the simultaneous treatment process and further to 100% following exposure to 2.5 mg/L ozone for 60 minutes during the sequential treatment mode, demonstrating the benefits of combined ozonation-biological treatment for the removal of polycyclic aromatic hydrocarbons.  相似文献   

20.
Elimination of alkylphenol ethoxylates (APEO) and their degradation products (alkylphenols and alkylphenoxy carboxylates), as well as linear alkylbenzene sulfonates (LAS) and coconut diethanol amides (CDEA), was studied in a pilot plant membrane bioreactor (MBR) working in parallel to a full-scale wastewater treatment plant (WWTP) using conventional activated sludge (CAS). In the CAS system 87% of parent long ethoxy chain NPEOs were eliminated, but their decomposition yielded persistent acidic and neutral metabolites which were poorly removed. The elimination of short ethoxy chain NPEOs (NP(1)EO and NP(2)EO) averaged 50%, whereas nonylphenoxy carboxylates (NPECs) showed an increase in concentrations with respect to the ones measured in influent samples. Nonylphenol (NP) was the only nonylphenolic compound efficiently removed (96%) in the CAS treatment. On the other hand, MBR showed good performance in removing nonylphenolic compounds with an overall elimination of 94% for the total pool of NPEO derived compounds (in comparison of 54%-overall elimination in the CAS). The elimination of individual compounds in the MBR was as follows: 97% for parent, long ethoxy chain NPEOs, 90% for short ethoxy chain NPEOs, 73% for NPECs, and 96% for NP. Consequently, the residual concentrations were in the low mug/l level or below it. LAS and CDEA showed similar elimination in the both wastewater treatment systems that were investigated, and no significant differences were observed between the two treatment processes. Nevertheless, for all studied compounds the MBR effluent concentrations were consistently lower and independent of the influent concentrations. Additionally, MBR effluent quality in terms of chemical oxygen demand (COD), NH(4)(+) concentration and total suspended solids (TSS) was always superior to the ones of the CAS and also independent of the influent quality, which demonstrates high potential of MBRs in the treatment of municipal wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号