首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Toth  H. Pavia 《Marine Biology》2002,140(2):403-409
Phlorotannins (polyphenolic compounds) are found exclusively in brown algae and are commonly regarded as an important component of algal defense against herbivores. The variation in phlorotannin concentration within and among individual seaweed specimens of the same species can be substantial, and seaweeds may respond to herbivore damage by an increased production of phlorotannins in order to prevent further herbivory. In the present study, we investigated the natural variation of phlorotannins in different parts of the kelp Laminaria hyperborea in an observational field survey. We also performed a manipulative induction experiment in which we studied the effect of natural grazing by the patellid limpet Ansates (=Helcion) pellucida and the littorinid snail Lacuna vincta, as well as artificial damage on the production of phlorotannins in L. hyperborea. There was a large variation in phlorotannin content both among and within L. hyperborea individuals and populations. The control plants in the induction experiment had a higher phlorotannin content compared to plants in natural populations, but grazing by A. pellucida or L. vincta, or artificial damage did not induce a higher phlorotannin concentration in the kelps. Instead, the phlorotannin content in wounded kelps was significantly lower than in the control plants, possibly due to removal of phlorotannin-rich outer layers of the kelp thallus, or to an induced compensatory growth response in the L. hyperborea plants. These results imply that L. hyperborea phlorotannins probably do not function as an inducible chemical defense against A. pellucida and L. vincta, instead grazing by these herbivores decreases the phlorotannin content of the kelps.  相似文献   

2.
Preference rankings for 13 macrophytes were established for the subtidal herbivorous snail Lithopoma undosum using two-choice laboratory experiments and consumption rates. L. undosum did not discriminate among three kelp foods (Egregia menziesii, Eisenia arborea and Macrocystis pyrifera) but ate kelp preferentially and more rapidly over all but Ulva spp. among tested macrophytes. Secondary preferences were established for the red alga Pterocladiella capillacea, followed by the coralline Lithothrix aspergillum, whereas the brown seaweeds Zonaria farlowii and Halidrys dioica and the seagrass Phyllospadix torreyi were the least preferred macrophytes. Fastest consumption rates (1.91 g day−1) were measured in trials consisting only of kelp foods. These results indicate that L. undosum exhibits clear feeding preferences even when given less-preferred, non-kelp macrophytes. Using an ash-marker technique, we determined total organic, carbon, and nitrogen assimilation efficiencies (AE%) for six macroalgae used in preference trials. Tested macrophytes were assimilated at different efficiencies but a pattern was not detected between AE (%) and a macrophyte’s position in L. undosum’s preference hierarchy. Highest total organic AEs were found for P. capillacea (61.2%) and H. dioica (59.4%); lowest AEs were detected for E. menziesii (34.9%), a preferred dietary item. Nitrogen was assimilated from red algae with higher efficiencies (74.9–84.3%) than from brown or green algae. These data suggest that the digestive capabilities of L. undosum are better suited for assimilating organic material and nitrogen from less-preferred, non-kelp foods. This supports the hypothesis that factors besides nutritional composition and digestive optimization have played a role in the evolution of feeding preferences in L. undosum and probably other herbivorous snails associated with northeastern Pacific kelp beds.  相似文献   

3.
The food quality of detrital particles derived from three species of kelps was evaluated in a laboratory feeding experiment utilizing two species of suspension feeders, the serpulid polychaete Pseudochitonopomaoccidentalis and the mussel Mytilustrossulus. Fresh and aged kelp particles were also evaluated, and growth in all treatments was compared to growth on ad libidum phytoplankton rations. Fresh particles from Laminariagroenlandica, aged particles from Agarumfimbriatum and Alariamarginata, and mixed phytoplankton promoted the highest growth rates in both consumers. Growth was inversely related to total polyphenolic concentration in the fresh kelp particles. The increase in quality of both Agarumfimbriatum and Alariamarginata particles with age corresponded with a rapid loss of polyphenolic secondary metabolites and an increase in total nitrogen. Received: 26 November 1996 / Accepted: 9 January 1997  相似文献   

4.
Brown algal polyphenolic compounds are secondary metabolites whose functions may include protecting plants from pathogens or damage by UV radiation, and deterring feeding by herbivores. We present here the first analysis of spatial variation (at scales from tens of meters to hundreds of kilometers) in concentration of these compounds in two orders of brown algae from the northeastern Pacific Ocean. In kelps (order Laminariales), variation among sites was significant in only 25% of species examined and was consistent within families (high in the Alariaceae and low in the Laminariaceae and Lessoniaceae). In rockweeds (order Fucales, family Fucaceae), site variation was high in three of four species examined. Both the proportion of high polyphenolic kelp species and the magnitude of spatial variation within species from both kelps and rockweeds were much higher than would have been predicted from previous studies in other regions. In one kelp (Laminaria groenlandica), significant differences between sites occurred at scales of only tens of meters. No latitudinal clines were observed. Differences in phenolic concentrations of kelps spanned nearly an order of magnitude in one species, Hedophyllum sessile. Phenolic levels were significantly higher in members of the Fucales than the Laminariales, but showed no significant differences between intertidal and subtidal species. Received: 22 July 1996 / Accepted: 26 October 1998  相似文献   

5.
6.
Regular observations made over a period of 5 yr in four permanent transects provided data on plant, sea urchin, and fish densities which indicate that two unusually severe winter storms in 1980 (Storm I) and 1983 (Storm II) had different effects on a southern California kelp-forest community. Storm I removed all canopies of the giant kelp Macrocystis pyrifera, but spared most understory kelps, mainly Pterygophora californica. Hence, the previously large accumulation of detached drift kelp, mostly M. pyrifera, disappeared. Denied their preferred diet of drift kelp, the sea urchins Strongylocentrotus franciscanus and S. purpuratus then emerged from shelters to find alternative food. Without effective predators, they consumed most living plants, including the surviving understory kelps. This weakened the important detritus-based food chain, as indicated indirectly by declining abundances of algal turf and fish (Embiotocidae) that eat small animals living in turf. In 1983, Storm II reversed the process by eliminating exposed urchins, while clearing rock surfaces for widespread kelp settlement and growth. By summer 1984, the kelp grew to maturity to form extensive canopies despite elevated water temperatures during summer and fall of 1983. Thus, severe storms may have vastly different effects on community structure, depending on the state of the community before the disturbance.  相似文献   

7.
RNA:DNA ratios of larval and juvenile red drum (Sciaenops ocellatus) collected from nursery habitats in the Aransas Estuary, Texas, in 1994 were quantified using a highly sensitive ethidium-bromide fluorometric technique. RNA:DNA ratios of wild red drum were evaluated by comparing individual values to a linear regression model derived for starved laboratory-reared red drum. Wild red drum were in relatively good condition with <5% of the RNA:DNA ratios within or below the 95% prediction interval of 4 to 5 d starved red drum. A multiple-regression model explained 54% of the variability in the RNA:DNA ratio of wild red drum, and identified length and water temperature (midday) as significant factors. RNA:DNA ratios increased with fish length [≃1.1 mm−1, over the size range investigated (5␣to 20 mm)]. The effect of temperature on the RNA: DNA ratio was assessed on different sampling trips, and ratios increased with increasing temperature. Abundance of larval and juvenile red drum in the Aransas Estuary varied as a function of both habitat (shoal grass Halodule wrightii, turtle grass Thalassia testudinum) and site (Aransas Bay, Redfish Bay); however, no differences in RNA:DNA ratios were detected between habitats or between sites. It is postulated that the nutritional condition of newly settled red drum from the Aransas Estuary in 1994 was relatively high, and that starvation was of minor importance. Received: 19 August 1996 / Accepted: 23 August 1996  相似文献   

8.
Non-indigenous ascidians in southern California harbors and marinas   总被引:6,自引:0,他引:6  
Southern California's many large harbors form an important coastal ecosystem, yet they are also a␣major destination for thousands of pleasure craft and cargo vessels that have often traveled great distances. Many groups of marine organisms, including ascidians, have now been documented as undergoing range extensions as a consequence of rapid ship-transport between distant harbors phenomenon. This has resulted in a rapid increase in the rate of introductions of non-indigenous species worldwide, yet these effects of boat traffic remain largely unstudied in southern California. Ascidians are sessile marine filter-feeders, hermaphroditic, and often self-fertilizing; many species are tolerant of a wide range of environmental conditions, can reach sexual maturity in just a few weeks, and have a long breeding season. This paper documents the arrival of 14␣non-indigenous species in southern California harbors␣during this century, 13 of which have persisted:␣four prior to the 1960s (Cionaintestinalis, Styelaclava, S.␣plicata, Botryllusschlosseri), another by 1972 (S.␣canopus, formerly S. partita), and 8 since 1983 [C.␣savignyi, Ascidia zara, Ascidia sp., Polyandrocarpa zorritensis, Symplegma brakenhielmi (formerly S. oceania, and S. reptans, Microcosmus squamiger, and Molgula␣manhattensis)]. We estimate the relative abundance and seasonal fluctuations of both non-indigenous and native ascidians in all harbors in southern California from San Diego to Santa Barbara based upon the historical record, our 35 yr of field notes, and our recent surveys carried out during fall 1994, spring and fall 1995, fall 1996 and spring 1997. Possible points of origin of the exotics and predictions on further U.S. Pacific coast range-extensions are included. The concomitant decline in numbers and species of native ascidians in the harbors of southern California during this century is also reviewed. Received: 4 March 1997 / Accepted: 26 September 1997  相似文献   

9.
Grazing of phytoplankton by copepods in eastern Antarctic coastal waters   总被引:1,自引:0,他引:1  
Chlorophyll a, primary productivity and grazing by copepods on phytoplankton were measured in the upper water column during the summer of 1994/1995 at a coastal site near Davis Station, East Antarctica. Chlorophyll a was at a maximum in mid-December, then dropped markedly as the coastal fast ice melted and broke‐out. Phytoplankton biomass increased again from mid‐ to late‐February. Copepods accounted for at least 65% of zooplankton biomass in the water column before sea ice break‐out, whereas larval polychaetes and ctenophores dominated after ice break‐out. Oncaeacurvata was the numerically dominant species throughout the study. The highest grazing rate (8.7 mg C␣m−3␣d−1) was recorded on 21 December when O.␣curvata accounted for 64% of the total. Grazing had decreased markedly by 28 December (0.9 mg C m−3 d−1); again O. curvata accounted for over 50% of the total ingested. Copepod grazing increased after ice break-out until the last experiment on 20 February (⋍5 mg C␣m−3␣d−1). The main species responsible for grazing during this period were O. curvata, Oithonasimilis, Calanoidesacutus and unidentified copepod nauplii. It was estimated that copepods removed between 1 and 5% of primary productivity. Received: 11 October 1996 / Accepted: 22 October 1996  相似文献   

10.
For small tube-building amphipods that live on the algae they consume, food and habitat are tightly linked. This study compared two closely related amphipods to determine whether the species’ algal preferences are based on the food value of the algae or on some other aspect of their algal habitat. Ampithoe lacertosa and Peramphithoe humeralis are both abundant on Shannon Point beach (Anacortes, Washington, USA; 48°30.542′ N, 122°41.070′ W) but specialize on different algae. In observations and laboratory experiments conducted July–September 1997, 2007, and 2008, the two species exhibited markedly different choices of food and habitat when offered six common macroalgae. Ampithoe lacertosa ate all algae offered, but preferentially built tubes on the green alga Ulva lactuca. Survival was relatively low among juveniles maintained on single species diets, except when they were fed Mazzaella splendens. Conversely, P. humeralis consumed primarily the brown kelp Saccharina latissima, Alaria marginata, and Desmarestia ligulata and preferred those species for tube building. Juvenile P. humeralis could not survive on a diet of U. lactuca or M. splendens. While A. lacertosa builds simple, temporary tubes and relocates frequently, P. humeralis is a highly thigmotactic species that builds long-term, complex tubes on the alga it prefers to eat. Feeding and habitat preferences of the two species were not clearly linked to nitrogen content of the algae, C:N ratio, or toughness of the algal tissue. Instead, preferences of the species may be related to their mobility and the permanence of the tubes they build. Ampithoe lacertosa and P. humeralis also use different feeding strategies; the former appears to mix algae to produce a high-quality diet, while the latter is more selective and has a capacity for compensatory feeding. The species are abundant on the same protected rocky shores, but specialize on different algae for habitat and food. Results suggest that the nutritional requirements of these sympatric mesograzers differ considerably and even closely related species can exhibit divergent behavioral strategies.  相似文献   

11.
  Specimens of the nominally herbivorous, closely-related, fish genera Girella and Kyphosus were collected from Australian waters in 1994 and 1995. The diet of three Girella species (G. cyanea, G. elevata, and G. tricuspidata) consisted mainly of chlorophytes and rhodophytes, with an animal component of␣15.9 ± 4.2% in G. tricuspidata. The diet of four species of Kyphosus (K. bigibbus, K. cinerascens, K. sydneyanus, and K. vaigiensis) included phaeophytes, chlorophytes and rhodophytes, and almost no animal material. Concentration of total short-chain fatty acids in the posterior intestine was <11.4 mM in the Girella spp. and >39.2 mM in the Kyphosus spp. These results suggest that microbial fermentation plays a role in algal digestion in Kyphosus spp., but not in Girella spp. Girellids and kyphosids appear to function quite differently as herbivores. Girellids should be considered as omnivores that complement readily-available energy from algae with protein from invertebrates. Kyphosids appear to be strict herbivores that can derive adequate nutrition from algae poor in easily assimilable energy, through microbial fermentation in the hindgut. Received: 8 July 1996 / Accepted: 2 August 1996  相似文献   

12.
Carbon consumption and nitrogen requirements were estimated for populations of the sandy beach bivalve Donax serra on nine beaches of the west coast of South Africa. Subtidal populations composed mainly of adult clams were responsible for the bulk of standing stock (3538 g C m−1), annual carbon consumption (13 444 g C m−1 yr−1), faeces production (6478 g C m−1 yr−1 ) and nitrogen regeneration (2525 g N m−1 yr−1). Kelp detritus, bacteria and kelp consumers' faeces available in the water column surpass several times the carbon and nitrogen requirements of intertidal and subtidal clam populations. Individual Donax serra pop ulations, in turn, may regenerate up to 3.2% of the total nitrogen requirements of all primary producers from kelp beds and 14% of the requirements of phytoplankton. These high standing stocks of clams are presumably supported mainly by organic matter originating from kelp which, in contrast to phytoplankton, is in constant supply and comprises the largest proportion of the annual production of particulate organic matter on this coast. Wide and shallow continental shelves with gentle slopes probably limit the penetration of upwelled waters to the nearshore waters, decreasing the influence of external inputs and increasing the importance of internal flows of nutrients and carbon within the nearshore zone. In this context, sandy beaches, rocky shores and kelp beds may be more closely interlinked compartments of a larger ecosystem encompassing the whole nearshore than traditionally thought. Received: 28 August 1996 / Accepted: 7 October 1996  相似文献   

13.
The bull kelp Durvillaea antarctica is a common floating alga in the southern hemisphere, but despite the ecological and biogeographic importance of kelp rafts, little is known about the responses of detached kelps to the conditions at the sea surface. The morphological, physiological and reproductive performances of D. antarctica rafts in the Coastal System of Coquimbo, Chile (CSC, ~30°S), were examined during winter and summer of two successive years (2010/11 and 2011/12). Epibionts (Lepas spp.) that only attach to floating objects were used as indicator for the floating time of kelp rafts. Photosynthetic efficiency and reproductive maturity of both benthic and floating algae varied seasonally, with a stronger decrease in summer than in winter. Blade size (measured as weight proportion of kelp individuals), phlorotannin concentrations and antioxidant activities were lower in floating than in benthic algae. Environmental conditions and floating time affected the blade tissues, with stronger negative effects during summer. These results confirm that floating persistence of D. antarctica in the CSC is suppressed during the summer months, which indicates that the dispersal potential of this (and other) floating algae varies seasonally.  相似文献   

14.
We studied the effects of grazing by two species of sea urchins on two species of kelp (Macrocystis pyrifera and Pterygophora californica) in the San Onofre kelp bed in southern California from 1978 through 1981. Both red sea urchins, Strongylocentrotus franciscanus, and white sea urchins, Lytechinus anamesus, were abundant and lived in aggregations. The purple sea urchin (S. purpuratus) was rare at the study site and was not studied. The aggregations of red urchins were either relatively small and stationary (for over 3 yr) or relatively large and motile (advancing at about 2 m mo–1). Both stationary and moving aggregations were observed at the same time, and within 100 m of one another. Stationary aggregations of red urchins probably subsisted mainly on drift kelp and had no effect on kelp recruitment or on adult kelp abundance. In contrast, red sea urchins in large, motile aggregations or fronts ate almost all the macroalgae in their path. The condition of their gonalds indicated that red urchins in fronts were starved relative to red urchins in the small, stationary aggregations. Large, motile aggregations developed after 2 yr of declining kelp abundance (probably due largely to storms). We propose that a scarcity of drift algae for food results in a change in the behavior pattern of the red urchins and thus leads to the formation of large, motile aggregations. The aggregations of white urchins, which occurred along the offshore margin of the kelp bed, were large, but relatively stationary. The white urchins rarely ate adult kelps, but grazed extensively on early developmental stages of kelps and evidently prevented seaward expansion of the bed. The spatial distribution of both types of red urchin aggregations appeared to be unrelated to predation pressure from fishes or lobsters.Please address all requests for reprints to the senior author at his present address.  相似文献   

15.
Five pelagic Halobates species occupy a vast area from 40 north to 40 south in the three major oceans. Oceanic diffusion, constantly acting to disperse these insects, must be an important factor in determining their life history and distribution. We investigated the effects of oceanic diffusion on the following aspects of these insects. (1) The estimated radius of a patch of Halobates could be expanded by oceanic diffusion alone from an initial point of origin to 1250 km in 60 d. This distance is about 1/12 of the maximum distributional range of H. micans in the Pacific Ocean. Mutual encounter rates due to oceanic turbulence could be as high as 11 d−1 even at low population densities (100 ind km−2). This suggests that individuals from their original habitat could find mates even when they had been carried a long distance. Thus, extensive gene mixing may occur over the whole range of a species' distribution. (2)␣Estimated growth rates are rather low (0.0026 to 0.0079 d−1) compared with those of other insects. However, they are offset by a long life span (over 90 d) and an extended oviposition period (perhaps over 2␣months). Thus, pelagic Halobates spp. appear to have adopted a strategy of slow growth and prolonged longevity to cope with living in an unstable physical environment that is constantly disturbed by storms and winds. Received: 5 February 1995 / Accepted: 30 October 1997  相似文献   

16.
Migrating feeding aggregations (or fronts) of sea urchins can dramatically alter subtidal seascapes by destructively grazing macrophytes. While direct effects of urchin fronts on macrophytes (particularly kelps) are well documented, indirect effects on associated fauna are largely unknown. Secondary aggregations of predators and scavengers form around fronts of Strongylocentrotus droebachiensis in Nova Scotia. We recorded mean densities of the sea stars Asterias spp. (mainly A. rubens) and Henricia sanguinolenta of up to 11.6 and 1.7 individuals 0.25 m−2 along an urchin front over 1 year. For Asterias, mean density at the front was 7 and 15 times greater than in the kelp bed and adjacent barrens, respectively. There was strong concordance between locations of peak density of urchins and sea stars (Asterias r = 0.98; H. sanguinolenta r = 0.97) along transects across the kelp–barrens interface, indicating that sea star aggregations migrated along with the urchin front at rates of up to 2.5 m per month. Size–frequency distributions suggest that Asterias at the front were drawn from both the barrens (smaller individuals) and the kelp bed (larger individuals). These sea stars fed intensively on mussels on kelp holdfasts and in adjacent patches. Urchin grazing may precipitate aggregations of sea stars and other predators or scavengers by incidentally consuming or damaging mussels and other small invertebrates, and thereby releasing a strong odor cue. Consumption of protective holdfasts and turf algae by urchins could facilitate feeding by these consumers, which may obtain a substantial energy subsidy during destructive grazing events.  相似文献   

17.
Individuals may associate with each other due to a variety of selective forces, such as intra- and intersexual selection, and conspecific recognition. Previous studies have concluded that mate choice governs association behavior in polygynous species of fish. I examined whether mate choice underlies the preference for larger individuals by examining preference for association (time spent in proximity to a fish) not only between opposite-sex individuals but also between same-sex individuals of the live-bearing sailfin molly (Poecilia latipinna). Males and females from three size classes were tested with a large and a small object fish of the same and opposite sex. Females preferred to associate with larger over smaller males. Males also preferred to associate with larger over smaller females, as expected. The same female and male test fish also preferred to associate with larger over smaller fish of the same sex. Moreover, females demonstrated no significant difference in their strength of preference (large–small) when offered males or females. The same held true for males. When males and females were subsequently tested with one large male and one large female, females tended to prefer large males while males showed no significant preference for association based on sex. In another experiment, females were tested with a large female and a small male, and significantly preferred the former. These findings suggest that association patterns may have arisen under a variety of conditions, such as predation pressures, shoaling behavior, and associative preference behavior. The assumption that association behavior is a uniformly sufficient predictor of mate choice in fish needs to be re-examined for P. latipinna and other species. Received: 6 November 1998 / Received in revised form: 12 May 1999 / Accepted: 12 May 1999  相似文献   

18.
More experimental evidence is needed to understand the role of propagules in macroalgal biology. There are no reports in the literature on the comparative physiology (e.g. photosynthesis) of sporelings and adults. In this paper we report on the␣variation␣in␣photosynthetic parameters (maximum photosynthesis, P max , and efficiency, alpha, and dark respiration (R d ) of cultivated young sporelings of the red alga␣Grateloupia␣doryphora (Montagne) Howe under normal conditions and after a short-term incubation at different salinities and temperatures. The results are compared to those␣for␣adult Stage III thalli obtained in laboratory culture from the same population of sporelings. The pigment composition of sporelings (more chlorophyll a and less phycoerthryn and phycocyanin than adults) promotes a better photosynthetic performance (higher P max and alpha and lower R d ) under chlorophyll a excitation. The younger sporelings were also more tolerant to variations in salinity and temperature than Stage III, in which the highest variation in maximum photosynthesis and dark respiration was observed. Received: 21 October 1996 / Accepted: 5 February 1997  相似文献   

19.
Many small marine herbivores utilize specific algal hosts, but the ultimate factors that shape host selection are not well understood. For example, the use of particular microhabitats within algal hosts and the functional role of these microhabitats have received little attention, especially in large algae such as kelps. We studied microhabitat use of the herbivorous amphipod Peramphithoe femorata that inhabits nest-like domiciles on the blades of giant kelp Macrocystis pyrifera. The vertical position of nest-bearing blades along the stipe of the algal thallus and the position of the nests within the lateral blades of M. pyrifera were surveyed in two kelp forests in northern-central Chile. Additionally, we conducted laboratory and field experiments to unravel the mechanisms driving the observed distributions. Peramphithoe femorata nests were predominantly built on the distal blade tips in apical sections of the stipes. Within-blade and within-stipe feeding preferences of P. femorata did not explain the amphipod distribution. Amphipods did not consistently select distal over proximal blade sections in habitat choice experiments. Mortality of tethered amphipods without nests was higher at the seafloor than at the sea surface in the field. Nests mitigated mortality of tethered amphipods, especially at the seafloor. Thus, protective microhabitats within thalli of large kelp species can substantially enhance survival of small marine herbivores. Our results suggest that differential survival from predation might be more important than food preferences in determining the microhabitat distribution of these herbivores.  相似文献   

20.
Sound pressure levels and the spectral structure of the advertisement calls of five species of frogs from the South American temperate austral forest were analyzed. Males of Eupsophus emiliopugini, Batrachyla antartandica and B. leptopus call from the ground in bogs, while males of Hylorina sylvatica and Pleurodema thaul call from the water surface in marshes. Calling males of the species from bogs and marshes spaced at average distances that were shorter and longer than 2 m, respectively. The properties of these habitats for sound propagation were evaluated by broadcasting pure tones, broadband noise and tape-recorded advertisement calls of the three species from bogs and of H. sylvatica. Excess attenuation and spectral degradation were higher for calls broadcast in bogs than in the marsh. The calls of B.␣antartandica and B. leptopus, with dominant frequencies of about 2 kHz, were more affected than those of E.␣emiliopugini and H. sylvatica, with dominant frequencies below 1.5 kHz. These results show the lack of an optimal relationship between properties of habitats for sound transmission and the spectral structure of these anuran calls. Body size imposes an important constraint on call spectra and propagation, which frogs counteract by distribution patterns and auditory capabilities. Received: 18 April 1997 / Accepted after revision: 15 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号