共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Energetics of growth and reproduction in cockles (Cerastoderma edule): Seasonal and age-dependent variations 总被引:3,自引:0,他引:3
Seasonal patterns of growth were compared interannually between 1983 and 1985 for different ageclasses of an intertidal population of cockles,Cerastoderma edule L., in the Mundaka Estuary (Basque Country, North Spain). Growth data and simultaneous determinations of respiratory metabolism were integrated over defined periods of time in order to compute assimilation and net growth efficiency. Consistent differences between the exponents that scale both assimilation and metabolism to body size led to growth efficiency values that were a decreasing function of age. Total growth was partitioned into three components: somatic growth, reproductive output and reserve storage, and the corresponding effort indexes were calculated. Despite important differences in total growth, reproductive output was constant between years, indicating a higher reproductive effort under poorer growth conditions. Increased costs of reproduction that appeared to be associated with this higher reproductive effort did not affect somatic maintenance, since previously stored carbohydrate reserves were primarily used to fuel gametogenesis. 相似文献
3.
The influence of environmental parameters (temperature, salinity and available food) on the condition, reproductive activity and biochemical composition of a native population of Ostrea edulis L. in San Cibran (Galicia, Spain) was studied between September 1988 and December 1989. Histological preparations of gonads showed that gametogenesis started when temperature was at its lowest in winter. The water temperature in San Cibran never fell low enough to interrupt it. Gametogenesis proceeded slowly and spawning took place in May–June, although the predicted time of ripening was early March. Salinity in San Cibran was relatively stable throughout the year; it did not seem to have any influence on gametogenesis. Available food appeared to be a very important factor in controlling gonad growth, once gametogenesis was initiated. The major concentration of suspended organic particulate matter was present in the spring at the time of rapid gonadal maturation. Only one spawning period was observed. Larvae were released when the food in the water was high. Seasonal changes in the main biochemical components of this oyster were determined for a standard individual. Lipids and carbohydrates presented a similar time-course whereas proteins were constant. When food was abundant, energy reserves were built up. Spawning produced a decrease in biochemical constituent levels, and recovery coincided with the phytoplankton bloom. The stored reserves, mainly lipids, were used to overcome a state of energy imbalance in late autumn associated with low food availability. Results show this oyster to be an opportunist organism which concentrates its reproductive effort during a short period of favourable conditions and which is directly dependent on nutritive availability in the environment. 相似文献
4.
The stable carbon and oxygen isotopic compositions of the massive coralPorites lobata collected from the Gulf of Eilat, Red Sea, in May 1987 were measured along the vertical growth axis. The isotopic compositions show annual periodicity. The variations along the isotopic profile, compared with the X-radiography, indicate that the high-density bands are enriched in18O and deposited during the season of lowest water temperature (winter). In contrast, the low-density bands are depleted in18O and deposited during the warmest seawater temperatures (summer). The stable carbon and the oxygen isotopic ratios are negatively correlated with a shift in phase. During the season of higher water temperatures and light intensity values (summer), the skeleton is depleted in18O and enriched in13C and vice versa for the winter time. The shift between the carbon and the oxygen isotopic curves reflects the shift between the seasonal light intensities and seasonal temperature variations in the shallow water. The oxygen isotope ratio was used to detect the seasonal variations in seawater temperatures. The coral aragonitic skeleton is depleted in18O compared to apparent equilibrium with ambient seawater. The disequilibria range from (ca.) -3.10 to -3.50 with an average value of 3.40. The isotope fractionation behavior during skeleton precipitation is discussed in light of the environmental variables. 相似文献
5.
K. Michalek-Wagner 《Marine Biology》2001,139(4):651-660
This study focusses on the nature and extent of variation in mycosporine-like amino acids (MAAs) in relation to annual cycles in solar radiation, seawater temperature, and reproduction in reef-flat populations of two soft coral species. The results show MAA tissue concentrations in shallow water colonies of Lobophytum compactum and Sinularia flexibilis to be significantly correlated to annual cycles in solar radiation (P<0.0006 and P<0.0005, respectively) and seawater temperature (P<0.0006 and P<0.0004, respectively). Evidence of seasonal cycles in MAA levels in the tissues of shallow-reef invertebrates positively correlating with annual cycles in solar radiation and temperature suggests that they are an integral component of the soft corals' biochemical defence system against high irradiance and/or temperature stress and thus bleaching. This is further corroborated by the higher production of MAAs in females than males prior to spawning (up to 67% and 56% for L. compactum and S. flexibilis, respectively), presumably to provide a high level of protection against irradiance stress for progeny. 相似文献
6.
7.
This paper reports the fluvial fluxes and estuarine transport of organic carbon and nutrients from a tropical river (Tsengwen River), southwestern Taiwan. Riverine fluxes of organic carbon and nutrients were highly variable temporally, due primarily to temporal variations in river discharge and suspended load. The sediment yield of the drainage basin during the study period (1995–1996, 616 tonne km–2 year–1) was ca. 15 times lower than that of the long-term (1960–1998) average (9379 tonne km2 year–1), resulting mainly from the damming effect and historically low record of river water discharge (5.02 m3 s–1) in 1995. The flushing time of river water in the estuary varied from 5 months in the dry season to >4.5 days in the wet season and about 1 day in the flood period. Consequently, distributions of nutrients, dissolved organic carbon (DOC) and particulate organic carbon (POC) were of highly seasonal variability in the estuary. Nutrients and POC behaved nonconservatively but DOC behaved conservatively in the estuary. DOC fluxes were generally greater than POC fluxes with the exception that POC fluxes considerably exceeded DOC fluxes during the flood period. Degradation of DOC and POC within the span of flushing time was insignificant and may contribute little amount of CO2 to the estuary during the wet season and flood period. Net estuarine fluxes of nutrients were determined by riverine fluxes and estuarine removals (or additions) of nutrients. The magnitude of estuarine removal or addition for a nutrient was also seasonally variable, and these processes must be considered for net flux estimates from the river to the sea. As a result, nonconservative fluxes of dissolved inorganic phosphorus (DIP) from the estuary are –0.002, –0.09 and –0.59 mmol m–2 day–1, respectively, for dry season, wet season and flood period, indicating internal sinks of DIP during all seasons. Due to high turbidity and short flushing time of estuarine water, DIP in the flood period may be derived largely from geochemical processes rather than biological removal, and this DIP should not be included in an annual estimate of carbon budget. The internal sink of phosphorus corresponds to a net organic carbon production (photosynthesis–respiration, p–r) during dry (0.21 mmol m–2 day–1) and wet (9.5 mmol m–2 day–1) seasons. The magnitude of net production (p–r) is 1.5 mol m–2 year–1, indicating that the estuary is autotrophic in 1995. However, there is a net nitrogen loss (nitrogen fixation–denitrification < 0) in 1995, but the magnitude is small (–0.17 mol m–2 year–1). 相似文献
8.
Seasonal and areal changes in standing stocks of phytoplankton,zooplankton and micronekton in the eastern tropical pacific 总被引:1,自引:0,他引:1
Five standing stocks were measured together at similar latitudes and longitudes on seasonally repetitive cruises in 3 areas — western, eastern, and southern — of the eastern tropical Pacific. The stocks were chlorophyll a at 0 to 150 m depth (mg/m2), night and day zooplankton at 0 to 200 m depth (ml/1000 m3), and night crustacean micronekton and fish-pluscephalopod micronekton at 0 to 200 m depth (ml/1000 m3). The logarithms of the measurements of each stock in each area were subjected to analysis of variance with the following factors: season (2 month period), latitude, and longitude. Seasonal coverage was most comprehensive, with 7 successive periods, in the western area (approximately 16° N to 3° S latitude, 100° to 122° W longitude). Most stocks in most parts of the western area had a simple seasonal cycle of low amplitude, with a single maximum and minimum that usually differed by a factor <2; some stocks in some parts of the area exhibited no seasonal cycle; all statistically significant cycles, except for fish-plus-cephalopod micronekton, were similar in phase. In the other two areas, located broadly to the east and south of the western area, suitable measurements were made at only 2 periods (opposite seasons) of the year. There were indications of phase differences between chlorophyll a and zooplankton in the eastern area, which should be further investigated. Most standing stocks declined gradually from east to west, and were higher in known upwelling areas and areas of shoal thermocline than elsewhere. 相似文献
9.
10.
The annual cycle of abundance and distribution of the scyphozoan medusae Aurelia aurita and Cyanea capillata was studied in the Bornholm Basin (central Baltic Sea) in 2002. Seasonal changes in prey composition and predatory impact were investigated by analyzing stomach contents. A. aurita occurred from July to November, with a maximum mean abundance of 2.3 ind. per 100 m3 in August, whereas C. capillata was caught in much smaller numbers from July to September. No ephyrae of either species were found; therefore, advection of medusae from the western Baltic Sea is assumed. From July to October, ~80% of A. aurita medusae was distributed in the upper 20 m above the thermocline, whereas C. capillata occurred only in the halocline below 45 m. A. aurita did not migrate vertically and fed mainly on the most abundant cladoceran species Bosmina coregoni maritima. Further prey organisms were the cladocerans Evadne nordmanni and Podon spp., mollusk larvae and copepods. Copepod nauplii and copepodite stages I–III were not eaten by the medusae, neither were fish eggs and larvae used as prey. Based on mean medusa and zooplankton abundance from the upper 20 m, the predatory impact was very low. In August, when mean abundance of A. aurita was highest, only 0.1% of the copepod and 0.5% of the cladoceran standing stock were eaten per day. However, in regions with higher medusa or lower zooplankton abundance, up to 7.9% of the cladoceran standing stock was consumed per day. Hence, A. aurita did not regulate the zooplankton community in the Bornholm Basin, and fish larvae did not suffer from competition with and predation by the medusae.Communicated by O. Kinne, Oldendorf/Luhe 相似文献
11.
The abundance, vertical distribution and population structure of two important small calanoid copepod species, Microcalanus pygmaeus (G. O. Sars) and Ctenocalanus citer Heron and Bowman, were studied in the eastern Weddell Sea in summer (January/February 1985), in late winter/early spring (October/November 1986) and in autumn (April/May 1992). The population of Microcalanus pygmaeus consisted mainly of copepodite stages CII and CIII in late winter/early spring and were concentrated between 500 and 200 m depth. In summer, stage CIV was the modal stage and the bulk of the population had ascended above 300 m. In autumn the population structure was bimodal with CI and CV dominating. Most of the population was concentrated between 300 and 200 m. In all investigation periods M. pygmaeus had their maximal concentrations in the thermo-pycnocline. The developmental stages CIII to CV of Ctenocalanus citer formed the bulk of the population in late winter/early spring. In October all developmental stages had their main distribution between 500 and 200 m, except females, which were concentrated in the upper 50 m. In November most of the population occurred between 200 and 50 m. The summer population was concentrated in the upper 50 m, and numbers increased dramatically as the new cohort hatched. Copepodite stages CII and CIII dominated the population at the end of January, while CIV dominated 2 wk later. In autumn, CV was the modal stage. The majority of the population was concentrated in the upper 100 m, but there was an increase in abundance below 300 m compared to summer. Age structure changed with depth with a younger surface population and an older one in deeper water layers. The seasonal change in number of M. pygmaeus is much smaller than that of C. citer; the summer:winter:autumn ratio of the former being about one, whereas the winter:summer/autumn of the latter was about nine. Early copepodite stages and adults of M. pygmaeus occurred throughout all investigation periods. The large proportion of early copepodite stages in April and in mid-October suggests autumn and early to midwinter breeding. Apparently, M. pygmaeus may reproduce and grow year-round or perhaps has a 2-yr life-cycle. In contrast, the dramatic increase in abundance of early copepodite stages of C. citer in summer suggests springtime reproduction. 相似文献
12.
Two abundant macrozooplankters, Oikopleura vanhoeffeni (Lohmann) and Calanus finmarchicus (Gunnerus) were collected from the coastal waters off Newfoundland in different seasons during 1990–1991 and incubated in natural seawater to collect freshly egested, field produced, fecal pellets. The densities of fecal pellets from O. vanhoeffeni and C. finmarchicus were measured in an isosmotic density gradient. These are the first reported seasonal measurements of fecal pellet densities from two different types of macrozooplankters, O. vanhoeffeni, a larvacean, filter feeder and C. finmarchicus, a crustacean, suspension feeder. Pellet density ranges and medians were significantly different among seasons for both species, depending primarily on the type of phytoplankton ingested and its ability to be compacted. Winter O. vanhoeffeni and fall C. finmarchicus feces filled with nanoplankters and soft bodied organisms had less open space [packing index (% open area) = 3.5 and 4% for O. vanhoeffeni and C. finmarchicus, respectively] and were more dense (1.23 and 1.19 g cm-3) than spring feces filled with diatoms (packing index = 15 and 23%, density = 1.13 and 1.11 gcm-3). For copepods, these results contrast with previously published density values and with the predicted copepod fecal pellet density calculated, in the present study, using the conventional mass/volume relationship. Copepod spring and summer diatom-filled feces had a calculated density of 1.12 and 1.24 gcm-3 vs a measured median density of 1.11 gcm-3 for both spring and summer feces; the fall feces containing nanoplankters had a calculated density of 1.08 gcm-3 vs a measured median density of 1.19 gcm-3. Knowledge of the seasonal variations in fecal pellet densities is important for the development of flux models. 相似文献
13.
Seasonal variations in microzooplankton grazing in the region of the Subtropical Convergence 总被引:6,自引:0,他引:6
Microzooplankton grazing and community structure were investigated in the region of the Subtropical Convergence (STC) during three cruises of the South African Antarctic Marine Ecosystem Study (SAAMES) in austral summer (January/February 1993; December 1994/January 1995) and winter (June/July 1993). Chlorophyll a concentrations were consistently dominated by the <20 m size fraction during all three cruises, while the contribution of the microphytoplankton (>20 m) to total chlorophyll a concentrations varied considerably between cruises. Microzooplankton communities were numerically dominated by protozoans comprising ciliates (aloricates and tintinnids) and dinoflagellates. Instantaneous growth coefficients of phytoplankton in the vicinity of the STC showed no seasonal trends. However, marked seasonal differences were observed in the size structure of the phytoplankton. The grazing impact of microzooplankton was highest when the <20 m chlorophyll fraction contributed >95% of the total. Under these conditions, the instantaneous grazing rates ranged between 0.15 and 0.66 d-1. These correspond to daily losses of 14 to 48% of the inntial standing stock and between 45 and 81% of the potential primary production. At stations where microphytoplankton contributed significantly (-20%) to total chlorophyll concentrations, the grazing coefficients were lower, ranging between 0 and 0.53 d-1. This corresponds to a loss of <41% of the initial standing stock, or between 0 and 56% of the potential production. Our data suggest that microzooplankton represent the main grazing sink for production when the <20 m chlorophyll size-class dominates total chlorophyll. These facts suggest that the efficiency of the biological pump may vary over time. 相似文献
14.
15.
The nitrogenous nutrition of the phytoplankton in Vineyeard Sound, Massachusetts, USA was investigated over a 15-month period. Highest rates of ammonium uptake were observed immediately prior to, or during, the diatom bloom periods, and with one exception were found in the <10 m size class. The saturating rate of ammonium uptake correlated well with temperature and gave Q10 values of 2.6–3.2; correlations with ambient solar irradiation were not nearly so clear. Uptake rates of ammonium exceeded those of nitrate except during the winter bloom of the diatom Rhizosolenia delicatula; yet calculation of the f ratio revealed that nitrate was relatively important in the nitrogenous nutrition of the phytoplankton throughout the year.Contribution no. 5096 from the Woods Hole Oceanographic Institution 相似文献
16.
Sinking rates of fecal pellets from gelatinous zooplankton (Salps,Pteropods, Doliolids) 总被引:3,自引:0,他引:3
Sinking rates were determined for fecal pellets produced by gelatinous zooplankton (salps, Salpa fusiformis and Pegea socia; pteropods, Corolla spectabilis; and doliolids, Dolioletta gegenbaurii) feeding in surface waters of the California Current. Pellets from the salps and pteropods sank at rates up to 2 700 and 1 800 m d-1, respectively; such speeds exceed any yet recorded for zooplankton fecal pellets. Fecal pellets of salps were rich in organic material, with C:N ratios from 5.4 to 6.2, close to values for living plankton. The relation between volume and sinking rate indicates that salp and pteropod pellets are slightly less dense than those of pelagic Crustacea; moreover, pellet density varied between different collection dates, probably because of differences in composition. In contrast, doliolid pellets sank at rates up to 208 m d-1, a rate much lower than would be expected from pellet size. Thus, density and sinking rates of pellets are much more variable in zooplankton than would be expected from studies of crustaceans alone. Moreover, the extraordinarily high sinking rates of fecal pellets of salps indicates that these tunicates may be disproportionately important in the flux of biogenic materials during periods when they form dense population blooms. 相似文献
17.
Nitrogen-fixation (acetylene reduction) rates were measured over an annual cycle in meadows of the seagrass Zostera noltii Hornem in the Bassin d'Arcachon, south-west France, between March 1994 and February 1995, using both slurry and whole-core techniques. Measured rates using the slurry technique consistently overestimated those determined on whole cores, probably due to the release of labile organic carbon sources as a result of root damage during preparation of the slurries. Thus, the whole-core technique may provide a more accurate estimate of in situ activity, since disturbance of physicochemical gradients of oxygen, sulphide, nutrients and the relationship between the plant roots and the rhizosphere microflora is minimised. Rates measured by the whole-core method were 1.8- to 4-fold greater (dependent upon season) in the light than those measured during dark incubations, indicating that organic carbon diffusing from the plant roots during photosynthesis was an important factor in regulating nitrogen fixation in the rhizosphere. Additions of sodium molybdate, a specific inhibitor of sulphate-reducing bacteria (SRB) inhibited acetylene-reduction activity by >80% as measured by both the slurry and whole-core techniques throughout the year, inferring that SRB were the dominant component of the nitrogen-fixing microflora. A mutualistic relationship between Z. noltii and nitrogen-fixing SRB in the rhizosphere, based on the exchange of organic carbon and fixed nitrogen is proposed. Acetylene- and sulphate-reduction rates showed distinct summer peaks which correlated with a reduced availability of ammonium in the sediment and the annual growth cycle of Z. noltii in the basin. Overall, these data indicate that acetylene reduction (nitrogen fixation) activity in the rhizosphere of Z. noltii was regulated both by the availability of organic carbon from the plant roots and maintenance of a low NH
4
+
concentration in the vicinity of the plant roots due to efficient assimilation of NH
4
+
by Z. noltii during the growth season. Nitrogenfixation rates determined from acetylene-reduction rates measured using the whole-core technique ranged from 0.1 to 7.3 mg N m-2d-1, depending on season, and were calculated to contribute between 0.4 and 1.1 g N m-2yr-1, or 6.3 to 12% of the annual fixed nitrogen requirement of Z. noltii. 相似文献
18.
Kumari V Rathore G Chauhan UK Pandey AK Lakra WS 《Journal of environmental biology / Academy of Environmental Biology, India》2011,32(2):153-159
Seasonal changes in abundance of nitrifiers (ammonia-oxidizing and nitrite-oxidizing bacteria) in surface and bottom water of freshwater ponds were examined with respect to temperature, DO, pH as well as concentration of ammonia and nitrite. The most probable number (MPN) of ammonia-oxidizers in different ponds varied from 1297 +/- 3.6 to 1673.23 +/- 0.36 ml(-1) in bottom and 720.5 +/- 8.1 to 955.3 +/- 10.8 ml(-1) in surface water during the rainy season while the MPN ranged from 1074 +/- 1.07 to 1372.17 +/- 4.6 ml(-1) in bottom and 515 +/- 10.1 to 678 +/- 11.8 ml(-1) in surface water in winter. However, the MPN were greatly reduced in summer and ranged from 435.05 +/- 15.7 to 547.54 +/- 2.12 ml(-1) in bottom and 218.7 +/- 7.3 to 368.4 +/- 9.32 ml(-1) in surface water. Similar seasonal trends were also observed in MPN of nitrite-oxidizers. Among all the physico-chemical parameters, abundance of nitrifiers was more positively correlated with ammonia and nitrite concentration in all the seasons. The abundance of nitrifiers in surface and bottom water was highest in rainy season followed by winter and modest in summer. The potential nitrification activities and oxidation rates were shown to be linear and activity of ammonia-oxidizing and nitrite-oxidizing bacteria was highest during rainy season. 相似文献
19.
Malaviya P Rathore VS 《Journal of environmental biology / Academy of Environmental Biology, India》2007,28(2):219-224
The present study was undertaken with the objective to study the characteristics of the effluent of Century Pulp and Paper Mill, Lalkuan (Uttarakhand) in different seasons. The variations in the physicochemical characteristics were observed and monitored up to 12 months at three different sites. Mean values of temperature, pH, chlorides and total phenols of the effluent were found below, whereas colour, BOD5, COD and lignin concentrations were above the minimum national standards (MINAS). 相似文献
20.
Pulikeshi MB Amoji SD Shagoti UM Biradar VA 《Journal of environmental biology / Academy of Environmental Biology, India》2003,24(2):165-171
The potential of E. fetida to degrade wastes into vermicompost and to produce vermiprotein in the form of worm-biomass during different seasons was evaluated. Results revealed that the environmental factors prevailing during different seasons did influence directly the life activities of the worm and indirectly the compostability of the wastes. Feeding activities of E. fetida reduced the time of production of an efficient organic pool with energy reserves as vermicompost. Further, the amount of vermicompost produced by the worm activity depended primarily on the environmental factors and secondarily on the nature of organic wastes. 相似文献