首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen BD  Zhu YG  Smith FA 《Chemosphere》2006,62(9):1464-1473
A glasshouse experiment was conducted to investigate U and As accumulation by Chinese brake fern, Pteris vittata L., in association with different arbuscular mycorrhizal fungi (AMF) from a U and As contaminated soil. The soil used contains 111 mg U kg(-1) and 106 mg As kg(-1). P. vittata L. was inoculated with each of three AMF, Glomus mosseae, Glomus caledonium and Glomus intraradices. Two harvests were made during plant growth (two and three months after transplanting). Mycorrhizal colonization depressed plant growth particularly at the early stages. TF (transfer factor) values for As from soil to fronds were higher than 1.0, while those for roots were much lower. Despite the growth depressions, AM colonization had no effect on tissue As concentrations. Conversely, TF values for U were much higher for roots than for fronds, indicating that only very small fraction of U was translocated to fronds (less than 2%), regardless of mycorrhizal colonization. Mycorrhizal colonization significantly increased root U concentrations at both harvests. Root colonization with G. mosseae or G. intraradices led to an increase in TF values for U from 7 (non-inoculation control) to 14 at the first harvest. The highest U concentration of 1574 mg kg(-1) was recorded in roots colonized by G. mosseae at the second harvest. The results suggested that P. vittata in combination with appropriate AMF would play very important roles in bioremediation of contaminated environments characterized by a multi-pollution.  相似文献   

2.
Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of 238U in the range 0-87 mg kg(-1). Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg(-1) soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil.  相似文献   

3.
Background Recent studies indicated that arbuscular mycorrhizal fungi (AMF) play important roles in plant accumulation of uranium (U) from contaminated environments, but the impacts of fertilization practices on functioning of the symbiotic associations, which are crucial factors influencing plant nutrition and growth responses to mycorrhiza, have rarely been considered. Materials and Methods In a greenhouse experiment, a bald root barley mutant (brb) together with the wild type (wt) were used to test the role of root hairs and AMF in uranium (U) uptake by host plants from a U contaminated soil. Nil, 20 and 60 mg KH2PO4-P kg–1 soil were included to investigate the influences of phosphorus (P) fertilization on plant growth and accumulation of U. Results Dry matter yield of barley plants increased with increasing P additions and wt produced significantly higher dry weight than brb. Mycorrhiza markedly improved dry matter yield of both genotypes grown at nil P, whereas only brb responded positively to mycorrhiza at 20 mg P kg-1. At the highest P level, mycorrhiza resulted in growth depressions in both genotypes, except for the roots of wt. In general, plant P concentrations increased markedly with increasing P additions and in response to mycorrhiza. Mycorrhiza and P additions had no significant effects on shoot U concentrations. However, root U concentrations in both genotypes were significantly increased by mycorrhiza. On the other hand, shoot U contents increased with increasing P levels, while 20 mg P kg-1 stimulated, but 60 mg P kg-1 marginally affected the U accumulation in roots. Root length specific U uptake was moderately enhanced both by root hairs and strongly enhanced by mycorrhiza. Moreover, non-inoculated plants generally had higher shoot-root ratios of U content than the corresponding inoculated controls. Conclusion Our study shows that AMF and root hairs improves not only P acquisition but also the root uptake of U, and mycorrhiza generally decreases U translocation from plant root to shoot. Hence, mycorrhiza is of potential use in the phytostabilization of U contaminated environments. Perspectives The complex impacts of P on U accumulation by barley plants suggested that U behavior in mycorrhizosphere and translocation along the soil-fungi-plant continuum as affected by fertilization practices deserve extensive studies for optimizing the function of mycorrhizal associations for phytoremediation purposes.  相似文献   

4.
The nitrifying activity and the effect of fertilization with urea and methylene urea were studied in a landfarming site. The site has been operative over 20 years and maintained by heavy nitrogen fertilization. The landfarming soil contained 4-6% (w/w) oil. The nitrate accumulation was 20-50mg NO3-N day(-1)kg(-1) observed after methylene urea fertilization of 889 g Nm(-2). Nitrification ex situ (in laboratory conditions) was 8.8 mg NO3-N day(-1) kg(-1) in the presence of 380 mg kg(-1) NH4+-N. The half-saturation concentration of nitrification was more than 200 mg NH4+-N kg(-1). The results show that nitrification was active in soil with high oil concentration. Urea fertilization of 893 g Nm(-2) caused an increase of soil NH4+-N concentration up to 5500 mg kg(-1) and pH>8.5. This led to inhibition of nitrification, which persisted after NH4+ concentration decreased below 200mg NH4+ kg(-1).  相似文献   

5.
An international inter-laboratory research program investigated the effectiveness of in situ remediation of soils contaminated by cadmium, lead and zinc, measuring changes in soil and soil solution chemistry, plants and soil microbiota. A common soil, from mine wastes in Jasper County MO, was used. The soil was pH 5.9, had low organic matter (1.2 g kg(-1) C) and total Cd, Pb, and Zn concentrations of 92, 5022, and 18 532 mg kg(-1), respectively. Amendments included lime, phosphorus (P), red mud (RM), cyclonic ashes (CA), biosolids (BIO), and water treatment residuals (WTR). Both soil solution and NH4NO3 extractable metals were decreased by all treatments. Phytotoxicity of metals was reduced, with plants grown in P treatments having the highest yields and lowest metal concentration (0.5, 7.2 and 406 mg kg(-1) Cd, Pb, and Zn). Response of soil micro-organisms was similar to plant responses. Phosphorus addition reduced the physiologically based extraction test Pb from 84% of total Pb extracted in the untreated soil to 34.1%.  相似文献   

6.
Pteris vittata was the first terrestrial plant known to hyperaccumulate arsenic (As). However, it is unclear how As hyperaccumulation influences nutrient uptake by this plant. P. vittata fern was grown in soil spiked with 0-500 mg As kg(-1) in the greenhouse for 24 weeks. The concentrations of essential macro- (P, K, Ca, and Mg) and micro- (Fe, Mn, Cu, Zn, B and Mo) elements in the fronds of different age were examined. Both macro- and micronutrients in the fronds were found to be within the normal concentration ranges for non-hyperaccumulators. However, As hyperaccumulation did influence the elemental distribution among fronds of different age of P. vittata. Arsenic-induced P and K enhancements in the fronds contributed to the As-induced growth stimulation at low As levels. The frond P/As molar ratios of 1.0 can be used as the threshold value for normal growth of P. vittata. Potassium may function as a counter-cation for As in the fronds as shown by the As-induced K increases in the fronds. The present findings not only demonstrate that P. vittata has the ability to maintain adequate concentrations of essential nutrients while hyperaccumulating As from the soil, but also have implications for soil management (fertilization in particular) of P. vittata in As phytoextraction practice.  相似文献   

7.
Bi YL  Li XL  Christie P 《Chemosphere》2003,50(6):831-837
In a pot experiment, red clover (Trifolium pratense) was grown in sterilized Zn-amended low available P soil (0, 50 or 400 mg Zn kg(-1)) with or without 100 mg kg(-1) added P and with or without inoculation with the arbuscular mycorrhizal (AM) fungus G. mosseae. When the plants were harvested after 40 days, AM colonization of the roots was still at an early stage, with only 14-38% of total root length colonized on average. AM colonization was highest in low-P soil, and was lowest in soil amended with 400 mg Zn kg(-1). Shoot yields were highest in AM plants with added P, but root yields were unaffected by AM inoculation. Shoot and root yields were higher with 100 mg added P kg(-1) soil, but lower with 400 mg Zn kg(-1) than 50 mg Zn kg(-1) or controls unamended with Zn. Shoot and root P concentrations were seldom higher in AM plants, but shoot P offtakes were higher in AM plants with added P. Concentrations of Zn and Cu were much higher in the roots than in the shoots. Shoot and root Zn and shoot Cu were lower, but root Cu was higher, in AM plants. Soil residual pH after plant growth was higher in AM treatments, and residual total Zn was also higher, indicating lower Zn uptake by AM plants. Soil solution pH was higher in AM treatments, and soil solution Zn was lower in the presence of mycorrhiza. The results are discussed in terms of AM protection of the plants against excessive shoot Zn uptake.  相似文献   

8.
Chelator induced phytoextraction and in situ soil washing of Cu   总被引:9,自引:0,他引:9  
In a soil column experiment, we investigated the effect of 5 mmol kg(-1) soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg(-1) Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8 +/-1.3 mg kg(-1) Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg(-1) exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53 +/- 0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates.  相似文献   

9.
The extent of pollution of the environment as a result of mining activities in Kabwe, the provincial capital of Central province in Zambia has not yet been evaluated. Mining of lead and zinc were the core activities of Kabwe mine while cadmium and silver were produced as by-products. The smelting processes produced a significant amount of copper. The spatial distribution of four heavy metals in soils in the northern, eastern, southern and western directions of the mine was analyzed using atomic absorption spectrometry (AAS). Samples were collected up to 20 km in each direction from the mine. Results were consistent with the wind flow patterns in the town. Results ranged between 0.08 and 28 mg kg(-1) (Cd); 0.20 and 0.61 mg kg(-1) (Cu); 0.10 and 758 mg kg(-1) (Pb) and 0.40 and 234 mg kg(-1) (Zn) suggesting high precipitation of metals from the core mining activities. These concentrations were for only the fractions of metals extractable by 0.5M nitric acid and that could be available for plant uptake in the environment. The distribution of metals indicated a decrease of metal concentrations with distance from the mine, which confirmed that precipitation due to mining activities was the main cause of soil contamination.  相似文献   

10.
Xu J  Yang L  Wang Z  Dong G  Huang J  Wang Y 《Chemosphere》2006,62(4):602-607
Pot soil experiments showed that copper (Cu) is highly toxic to rice. Rice grain yields decreased exponentially and significantly with the increase of soil Cu levels. Rice grain yield was reduced about 10% by soil Cu level of 100 mg kg(-1), about 50% by soil Cu level of 300-500 mg kg(-1) and about 90% by soil Cu concentration of 1,000 mg kg(-1). Root was more sensitive to soil Cu toxicity than other parts of rice plant at relatively lower soil Cu levels (less than 300-500 mg kg(-1)), but the growth of whole rice plant was severely inhibited at high soil Cu levels (300-500 mg kg(-1) or above). Cu concentrations in rice grain increased with soil Cu levels below 150-200 mg kg(-1), but decreased with soil Cu levels above 150-200 mg kg(-1), with peak Cu concentration at soil Cu level of 150-20 mg kg(-1). Cu was not distributed evenly in different parts of rice grain. Cu concentration in cortex (embryo) was more than 2-fold that in chaff and polished rice. More than 60% of the Cu in grain was accumulated in polished rice, about 24% in cortex (embryo), and about 12% in chaff. So, about 1/3 of the Cu in rice grain was eliminated after grain processing (chaff, cortex and embryo was removed).  相似文献   

11.
Mine tailings are one of the main environmental problems in post-mining landscapes and their removal is often complicated due to their high heavy metal content and dimensions. In this sense, using plant species for in situ stabilization may be an interesting and low cost option. Moreover, there are some plant species that have adapted to these conditions and are usually present at these contaminated sites. In this study, a mine tailing located in South-East Spain was investigated in order to establish lines for further phytostabilization research. A plot sampling design was carried out in order to characterize the soil properties. In addition, two plant species that have naturally colonized some parts of the tailing, Hyparrhenia hirta and Zygophyllum fabago, were sampled, including the analyses of their respective rhizospheric soils. The results of plot soil samples showed pH values from ultra acid to slightly alkaline. The electrical conductivity values were around 4dSm(-1) in plots with vegetation and 8dS m(-1) in the plot without vegetation. Total metal concentrations were high (4000 mg kg(-1) for Pb, 9000-15000 mg kg(-1) for Zn). DTPA- and water-extractable Zn were 5% and 3% of the total, respectively. H. hirta accumulated around 150 mg kg(-1) Pb in both shoots and roots. Zn concentration was 750 mg kg(-1) in Z. fabago shoots. DTPA-extractable Zn and Cu were positively correlated to plant uptake.  相似文献   

12.
Metal tolerance and phytoextraction potential of two common sorrel (Rumex acetosa L.) accessions, collected from a Pb/Zn contaminated site (CS, Lanestosa) and an uncontaminated site (UCS, Larrauri), were studied in fertilized and non-fertilized pots prepared by combining soil samples from both sites in different proportions (i.e., 0%, 33%, 66% and 100% of Lanestosa contaminated soil). The original metalliferous mine soil contained 20480, 4950 and 14 mg kg(-1) of Zn, Pb and Cd, respectively. The microcosm experiment was carried out for two months under greenhouse controlled conditions. It was found that fertilization increased mean plant biomass of both accessions as well as their tolerance. However, only the CS accession survived all treatments even though its biomass decreased proportionally according to the percentage of contaminated mine soil present in the pots. This metallicolous accession would be useful for the revegetation and phytostabilization of mine soils. Due to its high concentration and bioavailability in the contaminated soil, the highest values of metal phytoextracted corresponded to Zn. The CS accession was capable of efficiently phytoextracting metal from the 100% mine soil, indeed reaching very promising phytoextraction rates in the fertilized pots (6.8 mg plant(-1) month(-1)), similar to the ones obtained with hyperaccumulator plants. It was concluded that fertilization is certainly worth being considered for phytoextraction and revegetation with native plants from metalliferous soils.  相似文献   

13.
This study measured antioxidative responses of Chinese brake fern (Pteris vittata L.) upon exposure to arsenic (As) of different concentrations. Chinese brake fern was grown in an artificially-contaminated soil containing 0 to 200 mg As kg(-1) (Na2HAsO4) for 12 weeks in a greenhouse. Soil As concentrations at < or =20 mg kg(-1) enhanced plant growth, with 12-71% biomass increase compared to the control. Such beneficial effects were not observed at >20 mg As kg(-1). Plant As concentrations increased with soil As concentrations, with more As being accumulated in the fronds (aboveground biomass) than in the roots and with maximum frond As concentration being 4675 mg kg(-1). Arsenic uptake by Chinese brake enhanced uptake of nutrient elements K, P, Fe, Mn, and Zn except Ca and Mg, whose concentrations mostly decreased. The contents of non-enzymatic antioxidants (glutathione, acid-soluble thiol) followed similar trends as plant As concentrations, increasing with soil As concentrations, with greater contents in the fronds than in the roots especially when exposed to high As concentrations (>50 mg kg(-1)). The activities of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase) in Chinese brake followed the same trends as plant biomass, increasing with soil As up to 20 mg kg(-1) and then decreased. The results indicated though both enzymatic and non-enzymatic antioxidants played significant roles in As detoxification and hyperaccumulation in Chinese brake, the former is more important at low As exposure (< or =20 mg kg(-1)), whereas the latter is more critical at high As exposure (50-200 mg kg(-1)).  相似文献   

14.
This greenhouse experiment evaluated the influence of arsenic uptake by arsenic hyperaccumulator Pteris vittata L. and non-arsenic hyperaccumulator Nephrolepis exaltata L. on arsenic chemistry in bulk and rhizosphere soil. The plants were grown for 8 weeks in a rhizopot with a soil containing 105 mg kg(-1) arsenic. The soil arsenic was fractionated into five fractions with decreasing availability: non-specifically bound (N), specifically bound (S), amorphous hydrous-oxide bound (A), crystalline hydrous-oxide bound (C), and residual (R). P. vittata produced larger plant biomass (7.38 vs. 2.32 mg plant(-1)) and removed more arsenic (2.61 vs. 0.09 mg pot(-1) arsenic) than N. exaltata. Plant growth reduced water-soluble arsenic, and increased soil pH (P. vittata only) in the rhizosphere soil. P. vittata was more efficient than N. exaltata to access arsenic from all fractions (39-64% vs. 5-39% reduction). However, most of the arsenic taken up by both plants was from the A fraction (67-77%) in the rhizosphere soil, the most abundant (61.5%) instead of the most available (N fraction).  相似文献   

15.
Charles AL  Markich SJ  Ralph P 《Chemosphere》2006,62(8):1224-1233
Copper (Cu) and uranium (U) are of potential ecotoxicological concern to tropical freshwater biota in northern Australia, as a result of mining activities. Few data are available on the toxicity of U, and no data are available on the toxic interaction of Cu and U, to freshwater biota. This study determined the toxicity of Cu and U individually, and in combination, to a tropical freshwater macrophyte, Lemna aequinoctialis (duckweed), in a synthetic soft water (27 degrees C; pH, 6.5; hardness, 40 mg CaCO3 l-1, alkalinity, 16 mg CaCO3 l-1), typical of many fresh surface waters in coastal northern Australia. The growth rate of L. aequinoctialis decreased with increasing Cu or U concentrations, with the concentration of Cu inhibiting growth by 50% (EC50) being 16+/-1.0 microg l-1, with a minimum detectable effect concentration (MDEC) of 3.2 microg l-1. The concentration of U inhibiting growth by 50% (EC50) was 758+/-35 microg l-1 with a MDEC of 112 microg l-1. The EC50 value for the exposure of L. aequinoctialis to equitoxic mixtures of Cu and U was significantly (P0.05) higher than one toxic unit (1.35; 95% confidence interval, 1.18-1.52), indicating that the combined effects of Cu and U are less than additive (antagonistic). Therefore, inhibition of the growth rate of L. aequinoctialis was reduced when Cu and U were present in equitoxic mixtures, relative to individual metal exposures. Since non-additive (e.g. antagonistic) interactions of metal mixtures cannot be predicted using current mixture models, these results have important potential implications for the protection of freshwater ecosystems through the derivation of national water quality guidelines.  相似文献   

16.
The effects of Cd, Ni, Pb, and Zn on arsenic accumulation by the arsenic hyperaccumulator Pteris vittata were investigated in a greenhouse study. P. vittata was grown for 8 weeks in an arsenic-contaminated soil (131 mg As kg(-1)), which was spiked with 50 or 200 mg kg(-1) Cd, Ni, Pb, or Zn (as nitrates). P. vittata was effective in taking up arsenic (up to 4100 mg kg(-1)) and transporting it to the fronds, but little of the metals. Arsenic bioconcentration factors ranged from 14 to 36 and transfer factors ranged from 16 to 56 in the presence of the metals, both of which were reduced with increasing metal concentration. Fern biomass increased as much as 12 times compared to the original dry weight after 8 weeks of growth (up to 19 g per plant). Greater concentrations of Cd, Ni, and Pb resulted in greater catalase activity in the plant. Most of the arsenic in the plant was present as arsenite, the reduced form, indicating little impact of the metals on plant arsenic reduction. This research demonstrates the capability of P. vittata in hyperaccumulating arsenic from soils in the presence of heavy metals.  相似文献   

17.
An experiment was conducted to distinguish priming effects from the effects of phytoremediation of a creosote-polluted soil. The concentration of 13 polycyclic aromatic hydrocarbons (PAHs), and their combined soil toxicity (using four bioassays), was determined on recently excavated, homogenized soil and on such soil subjected to a time-course phytoremediation experiment with lucerne. The results showed a high priming effect, with minor positive and synergistic effects of planting and fertilization on PAH degradation rates. At the end of the experiment, PAH degradation reached 86% of the initial 519 mg PAHs kg(-1). Two of the four toxicity tests (bioluminescence inhibition and ostracod growth inhibition) corroborated the chemical data for residual PAHs, and indicated a significant reduction in soil toxicity. We conclude that priming effects can easily surpass treatment effects, and that an unintentional pre-incubation that ignores these effects can jeopardize the full quantitative assessment of in situ bioremediation of contaminated soil.  相似文献   

18.
Lai HY  Chen ZS 《Chemosphere》2005,60(8):1062-1071
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in rainbow pink shoots. The proposed method worked especially well for Pb (p<0.05). The application of 2 mmol EDTA kg(-1) might too low to enhance the phytoextraction effect when used in silty clay soils.  相似文献   

19.
Pot experiments were carried out to investigate the potential of phytoremediation with the arsenic hyperaccumulator Pteris vittata in a range of soils contaminated with As and other heavy metals, and the influence of phosphate and lime additions on As hyperaccumulation by P. vittata. The fern was grown in 5 soils collected from Cornwall (England) containing 67-4550 mg As kg(-1) and different levels of metals. All soils showed a similar distribution pattern of As in different fractions in a sequential extraction, with more than 60% of the total As being associated with the fraction thought to represent amorphous and poorly-crystalline hydrous oxides of Fe and Al. The concentration of As in the fronds ranged from 84 to 3600 mg kg(-1), with 0.9-3.1% of the total soil As being taken up by P. vittata. In one soil which contained 5500 mg Cu kg(-1) and 1242 mg Zn kg(-1), P. vittata suffered from phytotoxicity and accumulated little As (0.002% of total). In a separate experiment, neither phosphate addition (50mg P kg(-1) soil) nor liming (4.6 g CaCO3 kg(-1) soil) was found to affect the As concentration in the fronds of P. vittata, even though phosphate addition increased the As concentration in the soil pore water. Between 4 and 7% of the total soil As was taken up by P. vittata in 4 cuttings in this experiment. The results indicate that P. vittata can hyperaccumulate As from naturally contaminated soils, but may be suitable for phytoremediation only in the moderately contaminated soils.  相似文献   

20.
The influence of soil characteristics on the phytoremediation potential of Thlaspi caerulescens is not well understood. We investigated the effect of soil pH and Cd concentration on plant Cd uptake on one soil type, and the variation in Cd uptake using a range of field contaminated soils. On soils with total Cd concentrations of 0.6-3.7 mg kg(-1), T. caerulescens (the Ganges ecotype) produced greater biomass in the pH range 5.1-7.6 than at pH 4.4. The highest plant Cd concentration (236 mg kg(-1)) and Cd uptake (228 microg pot(-1)) were observed at pH 5.1. On soils with total Cd concentrations of 2.6-314.8 mg kg(-1), shoot Cd concentrations were 10.9-1,196 mg kg(-1). Multiple regression analysis indicated that higher Cd in soil, low pH (within the range of >5) and coarser texture were associated with higher Cd concentration and Cd uptake by T. caerulescens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号