共查询到18条相似文献,搜索用时 62 毫秒
1.
研究选取典型家具涂装行业为采样点,对底漆涂装车间、面漆涂装车间、干燥车间和车间有组织排放的VOCs样品进行采集,分析VOCs的污染特征、臭氧生成潜势和恶臭指数。结果表明:底漆和面漆涂装车间的总VOCs浓度分别为3 051.0,2 098.0μg/m~3,车间有组织排放产生的VOCs浓度较低。各生产工艺环节VOCs均以苯系物为主(78.6%~92.4%),车间有组织排放由于活性炭对苯系物的吸附作用,烷烃和烯烃质量分数较其他工艺环节高。底漆、面漆和干燥车间VOCs的臭氧生成潜势较高(7 903.34~18 535.8μg/m~3),敏感性物种均为1,2,4-三甲基苯、邻-二甲苯等苯系物。苯系物的恶臭指数较大,底漆、面漆和干燥车间的恶臭指数高达25.809、12.525和9.076,对二乙基苯、正丙苯、对乙基甲苯的恶臭指数相对较高,存在一定程度的恶臭污染。 相似文献
2.
为了评估淄博市涂装行业的挥发性有机物(VOCs)排放水平和减排潜力,对3个具有代表性的涂装行业:汽车制造涂装行业、木制家具涂装行业和金属表面涂装行业的8个典型企业展开实地调研;在此基础上采用实测法、物料衡算法和排放因子法核算企业的VOCs排放量,建立本地化排放因子,并与包括AP-42在内的国内外其他研究进行对比,评估企业排放水平;基于物料衡算法核算减排潜力;并采用显著性差异分析法研究各环节管控的影响程度.结果表明,淄博市汽车制造行业VOCs的排放因子为4.38 kg ·辆-1,木制家具涂装行业的排放因子(以涂料计)为212.52 g ·kg-1,金属表面涂装行业的排放因子(以涂料计)为42.79 g ·kg-1;家具企业C的源头减排潜力及金属G和F的过程减排潜力能够达到50%以上;各环节管控的影响程度从高到低依次为:源头>过程>末端. 相似文献
3.
对比了浙江省2014和2018年金属表面涂装企业的有机废气排放及治理情况,分析了该行业涂料及稀释剂的使用、主要污染因子,测算了溶剂型、水性涂料的挥发性有机物(VOCs)产生系数和排放系数.结果表明:2018年VOCs治理水平明显高于2014年,水性涂料使用企业比例由18%上升至36%,纯溶剂型企业由82%下降至64%;金属表面涂装行业的主要排放污染物为二甲苯、丁醇、乙酸乙酯、乙酸丁酯、甲苯、丙二醇、乙苯、苯乙烯等8种有机物.溶剂型和水性涂料的VOCs产生系数分别为0.72和0.31kg/kg;溶剂型和水性涂料2014年VOCs排放系数为0.64和0.29kg/kg,2018年为0.48和0.21kg/kg. 相似文献
4.
工业涂装行业是挥发性有机化合物(VOCs)综合治理的重点行业之一,涉及行业广,排放环节多,排放量大.确定不同行业的排放特点、治理现状与减排潜力是制定差异化的防治技术路线的基础.本文根据工业涂装行业排放占比,选取家具、汽车整车、汽车零部件、集装箱、机械制造、船舶、钢结构等行业开展源头替代、涂装工艺和设备、无组织排放收集以及末端治理等环节VOCs减排研究,分行业归纳总结VOCs排放特征,梳理VOCs控制技术在各行业的应用情况,评估各行业VOCs全过程控制整体水平,识别工业涂装VOCs控制的薄弱环节,计算不同减排路径下各行业的减排潜力.结果表明:(1)工业涂装行业普遍存在低VOCs含量涂料替代不足、自动化涂装方式占比低、无组织收集率偏低以及高端末端治理设施覆盖率偏低等问题,实施工业涂装行业全过程控制具有较大的减排潜力.(2)不同工业涂装行业减排重点应有所差别,木质家具、船舶和钢结构的VOCs减排潜力主要为源头替代及工艺改进,其减排潜力分别占本行业总减排潜力的80.3%、75.5%和68.2%,而汽车制造、集装箱、机械制造行业的重点减排环节以无组织收集和末端治理为主,该环节减排潜力分别占本行业... 相似文献
5.
佛山市典型铝型材行业表面涂装VOCs排放组成 总被引:1,自引:6,他引:1
选取佛山市典型铝型材行业不同表面涂装工艺(溶剂型涂料涂装、水性涂料涂装、电泳涂装、粉末喷涂)有组织废气VOCs进行了采样分析.结果表明,溶剂型涂料涂装废气VOCs浓度(63. 90~149. 67 mg·m~(-3))要远大于其他3种涂装工艺(2. 99~21. 93 mg·m~(-3)). VOCs组成来看,溶剂型涂料涂装废气VOCs以芳香烃为主,比例在52. 32%~71. 55%之间,主要污染物包括甲苯、乙苯、二甲苯等苯系物和乙酸乙酯等含氧挥发性有机物(OVOCs).水性涂料涂装废气以OVOCs为主,如乙酸乙酯(48. 59%)、四氢呋喃(8. 43%),芳香烃比例(11. 32%)远低于溶剂型涂料涂装废气.异丙醇是电泳涂装废气中最主要的VOCs化合物,贡献比例高达81. 19%.而粉末涂料涂装废气VOCs污染物主要是丙酮(30. 25%),以及丙烷(15. 48%)、乙烯(12. 15%)、乙烷(9. 35%)、正丁烷(5. 16%)等C2~C4的烷烃和烯烃.臭氧生成潜势(OFP)计算结果表明,溶剂型涂料涂装废气排放单位质量VOCs的臭氧生成潜势(OFP,以O3/VOCs计,下同)最高(3. 89 g·g~(-1)),其次是粉末喷涂(2. 53 g·g~(-1)),而水性涂料涂装和电泳涂装则较低(1. 31 g·g~(-1)和0. 85 g·g~(-1)).溶剂型涂料涂装废气中芳香烃对OFP贡献比例高达93. 28%,有9种C7~C10芳香烃位列OFP排名前10化合物;水性涂料涂装废气中乙酸乙酯、间/对-二甲苯和甲苯的臭氧生成潜势占比最高,分别为23. 24%、21. 76%和17. 07%;粉末涂料涂装废气中的关键活性组分则为乙烯、丙烯和1-丁烯等低碳烯烃,烯烃对其OFP贡献为71. 11%;电泳涂料涂装废气中异丙醇的OFP贡献(65. 08%)明显高于其他组分(6%). 相似文献
6.
7.
VOCs(挥发性有机物)现已被列为我国大气环境领域的核心污染物.随着汽车零配件制造行业减排要求的提出,于2018年6月选取典型汽车零配件制造企业,采用美国TO-15方法分析VOCs物种,采用FID(氢离子火焰检测器)对NMHC(非甲烷总烃)进行实测,分析汽车零配件涂装过程的VOCs排放特征.结果表明:①由于分析方式的不同,有组织排放的ρ(NMHC)比ρ(VOCs)高1.3~1.9倍,其中末端未安装VOCs处理设施的排气筒排放的ρ(NMHC)最高.②汽车零配件涂装过程排放的主要VOCs物种质量浓度占比范围分别为46.72%~98.33%(芳香烃)、1.20%~52.90%(含氧VOCs),其中ρ(二甲苯)、ρ(苯系物)超标(DB 31/933—2015《大气污染物综合排放标准》)情况较为严重.③未进入VOCs处理装置前的VOCs物种组成与原辅料中VOCs物种组成一致,二者主要VOCs物种的质量分数大致相同,说明生产工艺的不同对VOCs的排放组成影响较小.④比较RTO(蓄热式热力燃烧装置)和活性炭吸附装置处理VOCs前、后废气组成的差异发现,活性炭吸附装置处理对VOCs排放的组成基本无影响,经RTO处理后排放物种以芳香烃和含氧VOCs为主,但是w(芳香烃)和w(含氧VOCs)变化不一致,说明RTO对芳香烃和含氧VOCs处理效率不同.研究显示,为满足国家对汽车零配件制造行业VOCs的减排要求,源头使用高固分涂料或水性涂料替代溶剂型涂料,优化过程收集系统,增强末端处理技术的净化效果、安全性和稳定性,是实现汽车零配件制造行业全过程减排的重要手段. 相似文献
8.
9.
日本自实施硫氧化物大气污染控制对策以来,到1975年,已经基本达到环境标准,目前的大气污染物主要是氮氧化物。对此,尽管实施了固定污染源总量控制和加强汽车车辆的排放控制等各种对策,然而,氮氧化物大气污染没有得到改善。现在,这依然是防治大气污染的中心课题。互.拉氧化物*气污染现状全国15个连续测定站测得的二氧化氛年平均值从1978年至1985年是逐渐下降的,1986年再次上升,1988年以后,以较高的浓度值保持平稳。大城市未达到二氧化氮环境标准的较多。1985年,普通环境监测站的数据表明:达到环境标准的占总数的83%;1990年,… 相似文献
10.
不同行业点源产生VOCs气体的特征分析 总被引:2,自引:0,他引:2
在调研552个工业VOCs点源案例的基础上,采用Origin 7.5软件统计分析了不同行业产生VOCs气体的特征.结果表明:工业点源产生VOCs气体的流量主要分布在103~105m3/h之间;其中,食品制造业,木材加工,印刷业和木、竹、藤、棕、草制品业等产生的VOCs气体流量较高,在104~105m3/h之间.各工业点源产生的ρ(TVOC)(VOCs气体质量浓度)主要分布在102~104mg/m3之间;其中,非金属矿物制品业、农副食品加工业、石油加工、炼焦和核燃料加工业、化学原料及化学制品制造业等行业产生的ρ(TVOC)较高,在103~104mg/m3之间.化学原料及化学制品制造业、医药制造业产生的VOCs种类较多;各行业产生的典型VOCs包括苯类、酯类、醇类、醛类、酮类等.该研究成果可为相关行业开展点源VOCs污染治理和控制技术选择提供参考依据. 相似文献
11.
12.
挥发性有机化合物的污染控制 总被引:9,自引:0,他引:9
介绍各种常见的挥发性有机化合物(VOCs)的控制技术,包括回收技术和销毁技术。综述各种控制技术的基本原理和特点、应用条件及存在的问题,提出VOCs控制技术的发展方向。 相似文献
13.
14.
分析了商业建筑室内挥发性有机化合物 (VOCs)的来源 ,阐明了防治VOCs的方法并提出了控制VOCs对策。 相似文献
15.
16.
挥发性有机物(VOCs)和异味是生物发酵制药行业排放的主要污染物质,对人体健康和生态环境有潜在危害.目前,针对生物发酵制药行业VOCs和异味污染特征及防控技术的基础研究较少,有关制药企业VOCs和异味污染在监管和治理方面均缺乏充分的理论指导,甚至导致个别药企因环保措施治理不到位而只得搬迁的情况.本文以生物发酵制药行业作为研究对象,总结了不同生产流程、污水处理站和菌渣处理阶段VOCs和异味的污染特征,并在此基础上系统概述了应用于VOCs和异味末端治理技术的发展现状.因此,为更好地解决生物发酵制药行业VOCs和异味污染问题,未来应重点在以下4个方面开展工作:①优化生产工艺,实现污染物的源头削减;②开展针对发酵制药行业VOCs和异味的污染特征研究,建立快速、有效追溯VOCs和异味污染来源的方法;③针对VOCs和异味的污染特征,筛选高效和经济的治理技术;④推进生物发酵制药行业VOCs和异味排放标准和技术规程的制定和实施. 相似文献
17.
18.
对水泥工业废气中的粉尘、SO2、NOx、CO、氟及CO2等有害气体的污染问题进行分析,指出水泥工业所产生有害气体污染的原因,并分析应如何采用相应的防治技术。 相似文献