首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
ABSTRACT: A distributed watershed model was developed to mathematically simulate overland and channel flow for a single-event storm. The modeled watersheds in the study were subdivided into rectangular grid elements. All hydrologically significant parameters, such as land slope, rainfall and precipitation excess, were assumed to be uniform within each element. The Green-Ampt method was adopted to generate precipitation excess for each element during the simulation period. A two-dimensional diffusion wave model was used for overland flow routing and an iterative Alternative Direction Implicit scheme was used to solve the simultaneous overland flow equations. Once the overland flow became inflow to the channel, a one-dimensional dynamic wave flood routing technique, based on a four-point, implicit, non-linear finite difference solution of the St. Venant equation of unsteady flow, was applied. A limited number of comparisons were made between simulated and observed hydrographs for areas of about one square mile. Given the appropriate parameters, the model was able to accurately simulate runoff for single-event storms. This paper describes a distributed watershed model developed to simulate overland and channel flow. Comparisons were made between simulated and observed hydrographs for three watersheds. The model was able to accurately simulate the runoff for single-event storms using 61-m by 61-m (200 ft by 200 ft) watershed grid elements.  相似文献   

2.
Abstract: The PRMS_Storm model was built as a storm event, distributed hydrological model for studying the hydrological effects of forest composition and spatial distribution on storm‐flow volume and peakflow rates in the Xiangshuixi Watershed in the Three Gorges Reservoir Area, in the Yangtze River Basin in southwestern China. We developed three simulation scenarios based on forest composition and their spatial arrangements across the watershed, including all mixed conifer‐evergreen broadleaf forests (Scenario 1), all mixed evergreen broadleaf forests (Scenario 2), and mixed conifer + evergreen broadleaf + shrub forests (Scenario 3). We examined 11 storm events observed during 2002‐2005. Compared with the existing forest covers, modeling results suggested that the amount of overland flow was reduced by 21, 23, and 22%, and the interflow increased by 16, 88, and 30%, for Scenarios 1, 2, and 3, respectively. During the same time, peakflow rates were reduced by 20.8, 9.6, and 18.9%, respectively. The reduction of peakflow rates was most significant when rainfall intensity exceeded 0.8 mm/min and events with a short duration and effect was minor when rainfall intensity was below 0.5 mm/min. In general, we found that Scenarios 1 and 3 were preferred for reducing storm‐flow volume and peakflow rates due to their higher interception rates, large soil water holding capacity, and higher soil infiltration capacity. The modeled results suggested soil properties are important in affecting the flow processes and thus forest composition and forest spatial distributions will affect storm‐flow volume and peakflow rates at the watershed scale. To maximize flood reduction functions of a watershed, high priority should be given to those forest types (Scenarios 1 and 3) in reforestation practices in the study region. This study suggests both forest composition and spatial pattern are important reforestation designs for flood reduction in the Three Gorges Reservoir Area.  相似文献   

3.
ABSTRACT: The geomorphic instantaneous unit hydrograph (GIUH) may be one of the most successful methodologies for predicting flow characteristics in ungauged watersheds. However, one difficulty in applying the GIUH model is determination of travel time, and the other difficulty is the large amount of geomorphologic information required in the study watershed. Recently, using the kinematic-wave theory Lee and Yen (1997) have analytically determined the travel times for overland and channel flows in watersheds. The limitation of using an empirical velocity equation to estimate the runoff travel time for a specified watershed is then relaxed. To simplify the time-consuming work involved in geomorphic parameter measurement on topographic maps, the GIUH model is linked with geographic information systems to obtain geomorphic parameters from digital elevation models. In this paper, a case study performed for peak flow analysis in an ungauged watershed is presented. The geomorphic characteristics of the study watershed were analyzed using a digital elevation model and were used to construct the runoff simulation model. The design storm was then applied to the geomorphic runoff simulation model to obtain the design hydrograph. The analytical procedures proposed in this study can provide a convenient way for hydrologists to estimate hydrograph characteristics based on limited hydrologic information.  相似文献   

4.
ABSTRACT: The rainfall‐runoff response of the Tygarts Creek Catchment in eastern Kentucky is studied using TOPMODEL, a hydrologic model that simulates runoff at the catchment outlet based on the concepts of saturation excess overland flow and subsurface flow. Unlike the traditional application of this model to continuous rainfall‐runoff data, the use of TOPMOEL in single event runoff modeling, specifically floods, is explored here. TOPMODEL utilizes a topographic index as an indicator of the likely spatial distribution of rainfall excess generation in the catchment. The topographic index values within the catchment are determined using the digital terrain analysis procedures in conjunction with digital elevation model (DEM) data. Select parameters in TOPMODEL are calibrated using an iterative procedure to obtain the best‐fit runoff hydrograph. The calibrated parameters are the surface transmissivity, TO, the transmissivity decay parameter, m, and the initial moisture deficit in the root zone, Sr0. These parameters are calibrated using three storm events and verified using three additional storm events. Overall, the calibration results obtained in this study are in general agreement with the results documented from previous studies using TOPMODEL. However, the parameter values did not perform well during the verification phase of this study.  相似文献   

5.
ABSTRACT: Delivery of sediment and particulate pollutants from diffuse sources is shown to be related to the loss of sediment carrying energy of runoff during the overland flow phase. The loss is caused by the termination of rainfall and by reduction of flow energy during the recession phase of the overland flow hydrograph. It has been demonstrated both by theoretical analyses and experimental measurements that the saturated sediment concentration in overland flow is a function of rainfall erosivity and the runoff flow rate. The hypotheses were verified by field measurements from a small homogeneous watershed.  相似文献   

6.
ABSTRACT: An approach is developed for incorporating the uncertainty of parameters for estimating runoff in the design of polder systems in ungaged watersheds. Monte Carlo Simulation is used to derive a set of realizations of streamflow hydrographs for a given design rainstorm using the U. S. Soil Conservation Service (SCS) unit hydrograph model. The inverse of the SCS curve number, which is a function of the antecedent runoff condition in the SCS model, is the random input in the Monte Carlo Simulation. Monte Carlo realizations of streamfiow hydrographs are used to simulate the performance of a polder flood protection system. From this simulation the probability of occurrence of flood levels for a particular hydraulic design may be used to evaluate its effectiveness. This approach is demonstrated for the Pluit Polder flood protection system for the City of Jakarta, Indonesia. While the results of the application indicate that uncertainty in the antecedent runoff condition is important, the effects of uncertainty in rainfall data, in additional runoff parameters, such as time to peak, in the hydraulic design, and in the rainfall-runoff model selected should also be considered. Although, the SCS model is limited to agricultural conditions, the approach presented herein may be applied to other flood control systems if appropriate storm runoff models are selected.  相似文献   

7.
ABSTRACT: The SCS infiltration model was applied to the Ralston Creek watershed in eastern Iowa. The criteria to determine the various model parameters were revised to obtain a better agreement between the observed and computed total runoffs. A procedure to calibrate the infiltration model is presented. The infiltration model was used in conjunction with an overland flow model to develop flood hydrographs. The results indicate that SCS infiltration model adequately describe the distribution of losses.  相似文献   

8.
ABSTRACT: Flash flooding is the rapid flooding of low lying areas caused by the stormwater of intense rainfall associated with thunderstorms. Flash flooding occurs in many urban areas with relatively flat terrain and can result in severe property damage as well as the loss of lives. In this paper, an integrated one‐dimensional (1‐D) and two‐dimensional (2‐D) hydraulic simulation model has been established to simulate stormwater flooding processes in urban areas. With rainfall input, the model simulates 2‐D overland flow and 1‐D flow in underground stormwater pipes and drainage channels. Drainage channels are treated as special flow paths and arranged along one or more sides of a 2‐D computational grid. By using irregular computation grids, the model simulates unsteady flooding and drying processes over urban areas with complex drainage systems. The model results can provide spatial flood risk information (e.g., water depth, inundation time and flow velocity during flooding). The model was applied to the City of Beaumont, Texas, and validated with the recorded rainfall and runoff data from Tropical Storm Allison with good agreement.  相似文献   

9.
ABSTRACT: A soil erosion simulation model that considered the physical conditions of agricultural watersheds and that interfaced with the modified USDAHL-74 watershed hydrology model was developed. The erosion model simulates the detachment and transport of soil particles caused by raindrop impact and overland flow from rill and interrill areas. The model considers temporal and spatial variation of plant residue, crop canopy cover, snow cover, and the moisture content of surface soil as modifying factors of the erosive forces of raindrop impact and overland flow. The hydrology model simulates overland flow and some of the physical parameters that are used in the erosion model. The simulation is executed in the time interval determined by the rainfall rate or snowmelt rate. The erosion model compares the transport capacity of the overland flow and the sediment loaded in the overland flow to determine the fate account for the free soil particles that have already been detached and are readily available to be transported by the overland flow. The model was tested with data from two small agricultural watersheds in the Palouse region of the Pacific Northwest dryland. The model was calibrated by trial-and-error to determine the coefficients of the model.  相似文献   

10.
ABSTRACT: Levee sump systems are used by many riverine communities for temporary storage of urban wet weather flows. The hydrologic performance and transport of stormwater pollutants in sump systems, however, have not been systematically studied. The objective of this paper is to present a case study to demonstrate development and application of a procedure for assessing the hydraulic performance of flood control sumps in an urban watershed. Two sumps of highly variable physical and hydraulic characteristics were selected for analysis. A hydrologic modeling package was used to estimate the flow hydrograph for each outfall as part of the flow balance for the sump. To validate these results, a water balance was used to estimate the total runoff using sump operational data. The hydrologic model calculations provide a satisfactory estimate of the total runoff and its time‐distribution to the sump. The model was then used to estimate pollutant loads to the sump and to the river. Although flow of stormwater through a sump system is regulated solely by flood‐control requirements, these sumps may function as sedimentation basins that provide purification of stormwater. A sample calculation of removals of several conventional pollutants in the target sumps using a mass balance approach is presented.  相似文献   

11.
ABSTRACT: The effects of a moving rainstorm on flood runoff characteristics were investigated. A flood hydrograph simulation model called “FH-Model” and a natural watershed were used. A hypothetical rainstorm of 50 years recurrence interval, 75 mm depth, and 4 hours duration was used to show the effects of velocity and direction of the moving rainstorm on the runoff characteristics. Compared with an equivalent stationary rainstorm (ESRS), the peak flow caused by a rainstorm moving in a downstream direction with a speed equal to channel velocity, V, was 27.5 percent higher and the peak flow caused by the same rainstorm moving in an upstream direction was 21.7 percent smaller. These percentages reduced to 10.5 percent and 8.6 percent for storms moving downstream and upstream, respectively, at three times the channel velocity, 3V. There were negligible differences in the time of peak, Tp between runoff caused by storms moving downstream and runoff produced by ESRS. However, Tp for a storm moving upstream at V velocity was 82 percent higher than that produced by ESRS, but was reduced to 27 percent higher when the storm velocity was 3V.  相似文献   

12.
ABSTRACT: The dynamic relationship between stage and discharge which is unique to a particular flood for a selected station along the river can be determined via a mathematical model based on the complete one-dimensional equations of unsteady flow, i.e., the equations for the conservation of mass and momentum of the flood wave, and the Manning equation which accounts for energy losses. By assuming the bulk of the flood wave moves as a kinematic wave, the need for spatial resolution of the flood can be eliminated, and only the time variation of either the discharge or stage at the selected station is necessary for the computation of the other. The mathematical model can be used in river forecasting to convert the forecast discharge hydrograph into a stage hydrograph which properly reflects the unique dynamic stage-discharge relationship produced by the variable energy slope of the flood discharge. The model can be used also in stream gaging to convert a recorded stage hydrograph into a discharge hydrograph which properly accounts for the effects of unsteady flow. The model is applied to several observed floods at selected stations along the Lower Mississippi, Red, and Atchafalaya Rivers. The root mean square errors between observed and computed discharges are in the range of 3 to 7 percent, values well within the accuracy of the observations. A simple, easily-applied graphical procedure is also provided for estimating the magnitude of the effect of the unsteady flow on stage-discharge ratings. As a general rule, the dynamic effect may be significant if the channel bottom slope is less than 0.001 ft/ft (about 5 ft/mi) when the rate of change of stage is greater than about 0.10 ft/hr.  相似文献   

13.
ABSTRACT: A mesoscale meteorological model, a surface hydrology model, and a ground-water hydrology model are linked to simulate the hydrographic response of a large river basin to a single storm. Synoptic climatology is employed to choose a representative hydro-climatic event. The mesoscale meteorological model uses three nested domains to simulate relatively high-resolution precipitation over a sub-basin of the Susquehanna River Basin. The hydrology models simulate surface runoff and ground-water baseflow using both analyzed and simulated precipitation. The hydrologic abstractions are handled using both Curve Number and Green-Ampt routines. To support the linkage of the numerical models, special attention is given to data resampling and reprojection. The mesoscale meteorological model simulation captures the spatial and temporal structure of the storm event, while the hydrology models represent the timing of the event well. The Curve Number method generates a realistic hydrograph with both analyzed and simulated precipitation. In contrast, the hydrographic response generated by the Green-Ampt routine is inferior. Several interrelated factors contribute to these results, including: the nature of the precipitation event chosen for the experiment; the tendency of the mesoscale meteorological model to underpredict low intensity, widespread precipitation in this case; and the influence of the surface soil-texture characteristics on infiltration rates.  相似文献   

14.
ABSTRACT: The meteorology flood hydroclimatolog and socioeconomic impacts of the Flood of January 1996 in the Susquehanna River Basin are explored. The analysis explains how an unusual storm system brought high humidities, high temperatures, strong winds, and heavy rain to the basin. The rapid melt of the deep snowpack, combined with the heavy rainfall, produced the sudden release of large volumes of water. Because the ground surface was frozen or saturated, this water moved primarily as overland flow. Thus, the flood waters were not restricted to areas immediately adjacent to stream channels and, consequently, some of the largest impacts were on people, property, and infrastructure in areas not normally prone to flooding. Socioeconomic patterns of flooding over time and space are investigated to put this flood into context and to highlight its impacts. The analysis concludes that if such overland flooding is a more common feature of climate change, then the current vulnerability to this form of flooding and its economic implications must be considered carefully.  相似文献   

15.
Coastal catchments in British Columbia, Canada, experience a complex mixture of rainfall‐ and snowmelt‐driven contributions to flood events. Few operational flood‐forecast models are available in the region. Here, we integrated a number of proven technologies in a novel way to produce a super‐ensemble forecast system for the Englishman River, a flood‐prone stream on Vancouver Island. This three‐day‐ahead modeling system utilizes up to 42 numerical weather prediction model outputs from the North American Ensemble Forecast System, combined with six artificial neural network‐based streamflow models representing various slightly different system conceptualizations, all of which were trained exclusively on historical high‐flow data. As such, the system combines relatively low model development times and costs with the generation of fully probabilistic forecasts reflecting uncertainty in the simulation of both atmospheric and terrestrial hydrologic dynamics. Results from operational testing by British Columbia's flood forecasting agency during the 2013‐2014 storm season suggest that the prediction system is operationally useful and robust.  相似文献   

16.
ABSTRACT: The unit hydrograph is a common tool in hydraulic design. Used correctly, it allows a design engineer to estimate a runoff hydrograph from a drainage basin given a rainfall event. The typical method for estimating a unit hydrograph for a gaged watershed is by deconvolution. However, distinct storms produce different unit hydrographs for a single watershed. Consequently, a design engineer usually develops a composite, or average, unit hydrograph based on several recorded storm events. Common methods for estimating this composite unit hydrograph include curve fitting, simple aggregation, and multistorm optimization techniques. This paper introduces a new method to perform aggregation of unit hydrographs. The method is an extension to the simple averaging technique, in which prior to averaging, the individual unit hydrograph time ordinates are normalized with respect to the average time to peak. The normalization method is compared to a simple averaging technique and two multistorm aggregation techniques at six rural watersheds in Alabama. The results indicate that on average the normalization method predicts runoff nearly as accurately as the multistorm techniques, and displays improvement for 60 percent of the storms tested when compared with the simple averaging technique.  相似文献   

17.
ABSTRACT: In this study, remotely sensed data and geographic information system (GIS) tools were used to estimate storm runoff response for Simms Creek watershed in the Etonia basin in northeast Florida. Land cover information from digital orthophoto quarter quadrangles (DOQQ), and enhanced thematic mapper plus (ETM+) were analyzed for the years 1990, 1995, and 2000. The corresponding infiltration excess runoff response of the study area was estimated using the U.S. Department of Agriculture (USDA), Natural Resources Conservation Service Curve Number (NRCS‐CN) method. A digital elevation model (DEM)/GIS technique was developed to predict stream response to runoff events based on the travel time from each grid cell to the watershed outlet. A comparison of predicted to observed stream response shows that the model predicts the total runoff volume with an efficiency of 0.98, the peak flow rate at an efficiency of 0.85, and the full direct runoff hydrograph with an average efficiency of 0.65. The DEM/GIS travel time model can be used to predict the runoff response of ungaged watersheds and is useful for predicting runoff hydrographs resulting from proposed large scale changes in the land use.  相似文献   

18.
19.
ABSTRACT: Some 96 flood events larger than the mean annual flood from 16 watersheds in the Commonwealth of Pennsylvania were used to derive unit hydrographs by the least-squares method. Analyses of the unit hydrographs were conducted to ascertain their response to watershed parameters, climatic and storm variables and locations within different hydrologic regions. Significant differences both within and among watersheds led to the formulation and testing of hypotheses stating that differences among watersheds are caused by physiographic differences while differences within watersheds result from climatic and storm differences. The analysis showed, that while many watersheds parameters strongly influence the shape of the unit hydrograph, only the storm variables duration and volume of precipitation excess produce significant differences. Seasonal differences were apparent but not proven statistically significant.  相似文献   

20.
ABSTRACT: Two modifications to automated pumping samplers improve discrete sampling during high flow events in small mountain streams. One modification entails mounting the intake nozzle on a bent, free-swinging metal rod supported in midstream. This allows sampling in midstream yet prevents the buildup of floatable organic debris that otherwise would cause the intake to fail. On the lower end of the rod, dynamic forces exerted by the stream keep the intake submerged over diverse flow conditions. The second modification consists of a magnetic switching device that automatically activates the pumping sampler at any preset stage on the rising limb of a storm hydrograph. The pumping sampler then remains on to collect one sample per hour which allows field crews sufficient time to change bottles before the sampler fills its 28-bottle capacity. This device improves the capability to sample frequently at fixed intervals, yet with minimal maintenance between runoff events. It also ensures sample collection during the rising limb of the hydrograph when flow and sediment concentrations are rapidly changing. Both modifications have improved data collection during periods of storm runoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号