共查询到20条相似文献,搜索用时 15 毫秒
1.
Michael F. Merigliano 《Journal of the American Water Resources Association》1997,33(6):1327-1336
ABSTRACT: The at-a-station hydraulic geometry of stream channels can serve as a predictor of alluvial stream channel behavior. This geometry is the empirical relations describing changes in water surface width, mean depth, and mean velocity with changing discharge. The exponent values are correlated with channel morphology and behavior such as scour and fill, flow resistance, bank resistance, and competence. Channel behavior and morphology are apparently related, but some causes for effects are uncertain. Several studies, using empirical and theoretical bases, are reviewed here to illustrate the relation between hydraulic geometry and channel behavior, but the relations are not always consistent. Hydraulic geometry variables are easy to measure and readily available, but they do not always reflect what may be more important ones such as turbulence, the velocity distribution profile, and distribution and cohesion of sediment particles. This paper illustrates some of these problems, provides some solutions, and addresses need for more work to better predict stream channel behavior from hydraulic geometry 相似文献
2.
Richard F. Hadley William W. Emmett 《Journal of the American Water Resources Association》1998,34(3):629-637
ABSTRACT: A flood-control dam was completed during 1979 on Bear Creek, a small tributary stream to the South Platte River in the Denver, Colorado, area. Before and after dam closure, repetitive surveys between 1977 and 1992 at five cross sections downstream of the dam documented changes in channel morphology. During this 15-year period, channel width increased slightly, but channel depth increased by more than 40 percent. Within the study reach, stream gradient decreased and median bed material sizes coarsened from sand in the pools and fine gravel on the rime to a median coarse gravel throughout the reach. The most striking visual change was from a sparse growth of streamside grasses to a dense growth of riparian woody vegetation. 相似文献
3.
Peter P. Brussock Arthur V. Brown John C. Dixon 《Journal of the American Water Resources Association》1985,21(5):859-866
A system is proposed to classify running water habitats based on their channel form which can be considered in three different sedimentological settings: a cobble and boulder bed channel, a gravel bed channel, or a sand bed channel. Three physical factors (relief, lithology, and runoff) are selected as state factors that control all other interacting parameters associated with channel form. When these factors are integrated across the conterminous United States, seven distinct stream regions are evident, each representing a most probable succession of channel forms downstream from the headwaters to the mouth. Coupling these different channel profiles with typical biotic community structures usually associated with each of the channel types should result in considerable refinement of the applicability of the River Continuum Concept and other holistic ecosystem models by realizing the nonrandomness of the effects of geo-morphology on stream ecosystems. Thus, this regional perspective of streams should serve to make persons concerned with water resources more aware of the geographical considerations that affect their study areas. 相似文献
4.
Charles F. Leaf 《Journal of the American Water Resources Association》1998,34(4):865-876
ABSTRACT: An accounting procedure is developed which determines a flow regime that is capable of transporting an amount of bedload sediment necessary to ensure channel stability downstream. The method allows for sediment buildup in the channel within geomorphic threshold limits during low flow periods. During periods of high runoff, enough water is bypassed to transport the stored sediment. The procedure utilizes only those flows of sufficient magnitude to maintain channel stability over the long run (25–50+ years). An example is presented which determines the volume of water and frequency of release for channel maintenance purposes downstream from a hypothetical water diversion project. Of some 1,200,000 acre feet generated during a 59-year period, 86,500 acre feet was required for channel maintenance flows. Bypass flows were not required each year, but only during those years when average daily flow reached bankfull or greater. Such releases were made on 202 of the 411 days when average flows either equalled or exceeded bankfull discharge. 相似文献
5.
Jeffrey J. Dose Brett B. Roper 《Journal of the American Water Resources Association》1994,30(6):993-1000
ABSTRACT: Recent stream survey data (1989–1993) from 31 stream segments of 21 streams within the upper South Umpqua Watershed Oregon were compared to 1937 stream survey data collected from these same stream segments. Current low-flow wetted stream widths of 22 of the 31 surveyed stream segments were significantly different than in 1937; 19 stream segments were significantly wider while the remaining three stream segments were significantly narrower. In only 1 of 8 tributaries to the South Umpqua River which had headwaters within land designated wilderness area did low-flow stream channel width increase since 1937. Conversely, 13 of the 14 tributaries to the South Umpqua River which originated from lands designated as timber emphasis were significantly wider than in 1937. The observed change in stream width was linearly related to timber harvest (r2= 0.44), road density (r2= 0.45), and the amount of large organic debris remaining within the active stream channel (r2= 0.43). These findings suggest that timber harvest and road construction may have resulted in changes in channel characteristics. These channel changes may also be a factor in the observed decline of three of the four populations of anadromous salmonids within the basin. 相似文献
6.
Val H. Smith 《Journal of the American Water Resources Association》1985,21(3):433-439
In lakes which experience water quality problems due to the nuisance growth of blue-green algae, summer concentrations of chlorophyll a may not always be a meaningful measure of water quality for making management decisions. Models for the prediction of summer mean blue-green algal biomass were thus developed from data collected from five systems located in North America and Sweden. It is suggested that the model of choice is log BG =?0.142 + 0.596 log TP – 0.963 log Z, where BG is the biomass of blue-green algae (g m?3), TP is the concentration of total phosphorus (mg m?3), and Z is the mean depth of the lake (m). When coupled to current loading models, this model can potentially be used to assess the impacts of phosphorus loading reductions on threshold odor in water supplies. 相似文献
7.
Kenneth M. Strzepek David H. Marks 《Journal of the American Water Resources Association》1981,17(1):10-15
ABSTRACT: Simulation models constructed to estimate the physical and economic performance of alternative river basin development configurations have been widely used since the start of the Harvard Water Program in the early 1960's. These models have proved useful in choosing from among several potential river basin configurations, since they can rapidly evaluate each configuration's expected performance. However, when dealing with large scale river basin development projects, in which over 50 or 100 alternative reservoirs, irrigation areas, and other components must be considered, it is sometimes quite difficult to effectively use a simulation model to rapidly identify those combinations of projects which best satisfy the development objectives. The purpose of this paper is to describe how a simulation model was used in the analysis of a complex river basin development project in Eastern Europe, and how the problems of scale were confronted and solved. The author's experience on this projet is used to derive a set of general guidelines which may be helpful in other simulation studies. 相似文献
8.
Heidi Wienert George Roy C. Sidle 《Journal of the American Water Resources Association》1995,31(6):1051-1062
ABSTRACT: Geomorphic processes may partly determine channel geometry. Soil particle uplift during freezing and thawing cycles and bank sloughing during wetting and drying periods were observed. Soil properties and channel dimension were measured to determine the dominant processes controlling channel geometry in eight small (mean area 0.096 km2) drainages in Logan Canyon, Utah. Soil cohesion was low (plasticity index > 15) for all but one of the drainages sampled. Basin scale geomorphic variables were examined to determine if they control channel dimension. Bankfull width was highly correlated to channel length and valley length with r2 values of 0.85 and 0.84, respectively. A strong canonical correlation (0.64) showed that distance from the watershed divide, bank liquid limit, and bank sand content were effective predictor variables of bankfull width and depth. The interrelations between geomorphic and pedogenic processes were the strongest determinants of ephemeral channel dimension in this study. 相似文献
9.
Chris X. Rao Edwin P Maurer 《Journal of the American Water Resources Association》1996,32(6):1139-1146
ABSTRACT: A simplified approach for modeling transmission losses in a stream is presented. A theory relating seepage from a channel with the depth of flow is simplified to a one-parameter relationship. A power relationship is then utilized for the stage-discharge relationship, which is coupled with the seepage relationship. This combined equation is integrated over the channel reach to arrive at a general model for seepage loss through the reach, with one parameter needing calibration. An example is provided showing the development of the relationship and the calibration technique for the parameter. The results are shown, emphasizing the use of the model for simulation of channel transmission losses at low and moderate flow conditions. 相似文献
10.
Albert Rango Arlen Feldman Thomas S. George III Robert M. Ragan 《Journal of the American Water Resources Association》1983,19(2):165-174
ABSTRACT: In a cooperative demonstration project, NASA and the U.S. Army Corps of Engineers (Corps) compared conventional and Landsat-derived land-use data for use in hydrologic models, and the resulting discharge frequency curves were analyzed. When a grid-based data-management system was used on a cell-by-cell basis (size about 1.1 acres or 0.45 hectare), Landsat classification accuracy was only 64 percent, but, when the grid cells were aggregated into watersheds, the classification accuracy increased to about 95 percent. When both conventional and Landsat land-use data were input to the HEC-1 model for generating discharge frequency curves, the differences in calculated discharge were judged insignificant for subbasins as small as 1.0mi2 (2.59 km2). For basins larger than 10mi2 (25.9km2), use of the Landsat approach is more cost-effective than use of conventional methods. Digital Landsat data can also be used effectively by local and regional agencies for hydrologic analysis by incorporating the data into grid-based data-management systems. The transfer of this new technology is well under way through inclusion in some Corps training courses and through use by both county government personnel and private consultants. 相似文献
11.
John J. Hidore 《Journal of the American Water Resources Association》1971,7(3):554-561
ABSTRACT The runoff from a series of watersheds in the United States is examined to determine if there are distinct trends present. The data are examined for the period 1931-1960 and the results compared with those obtained for the period from the beginning of record to 1960. A larger sample of streams with records of various lengths is also utilized. The data used are annual, seasonal, and monthly values. The streams are grouped geographically to determine if regional patterns exist. The runoff increased on the majority of streams for the period 1931-1960, but for the period from the beginning of record to 1960 most streams exhibited a negative trend. When geographical distribution is considered, the streams located in the interior of the continent show greater similarity of trend than do those on the continental margins. 相似文献
12.
Sally A. McConkey Krishan P. Singh 《Journal of the American Water Resources Association》1992,28(2):305-313
ABSTRACT: Along a drainage network, there is a systematic variation of average flow parameters (width, depth, and velocity) at flows having the same flow duration. Hydraulic geometry equations mathematically express this interdependent relationship of stream-flow characteristics for a basin for annual flow durations varying from 10 to 90 percent. However, the equations proposed so far have had rather poor predictive performance for low flows. An independent investigation of the variation of discharge with drainage area and annual flow duration demonstrates a consistent relationship between these parameters. The relationship for the high to median-flow range differs, however, from that for the median— to low-flow range. The proposed equations provide a better predictive performance for low flows than previous formulations and a versatile means of estimating flow parameters for streams throughout a basin. The improved basin hydraulic geometry equations have a wide range of applications in areas such as stream habitat assessment, water quality modeling, channel design, and stream restoration projects. 相似文献
13.
Gene A. Whitaker Richard H. McCuen John Brush 《Journal of the American Water Resources Association》1979,15(3):874-879
ABSTRACT: The principal objective of this study was to investigate the long-term, temporal effect of channel modification in the diversity of macroinvertebrates. Correlation analyses suggest that aquatic macroinvertebrate communities stabilize shortly after channel modification. This conclusion is based on correlation analyses including five widely accepted diversity indices for stream reaches that have undergone channel work from less than 1 year to more than 30 years prior to the study. 相似文献
14.
Jean E. Weber Martin M. Fogel Lucien Duckstein 《Journal of the American Water Resources Association》1976,12(1):1-17
ABSTRACT. Four commonly used models for predicting sediment yield are analyzed and compared using previously published data. Three of these models involve logarithmic transformations. Some of the problems involved in transforming data are discussed in the context of logarithmic transformations. These problems are illustrated using the results of standard regression analyses and economic loss function analyses. For the data analyzed, the linear model is preferable to each of the logarithmic models on the basis of each analysis, and the usual multiple objective nature of the model choice problem is thus modified. The extent to which these results can be generalized is discussed in the context of model choice. 相似文献
15.
Kenneth H. Reckhow Jonathan B. Butcher Carlos M. Marin 《Journal of the American Water Resources Association》1985,21(2):185-195
Models for pollutant runoff can be useful in water quality management planning if appropriately structured for the problem at hand. Accordingly, a “top-down” approach is proposed for the examination of extant pollutant runoff models. The approach consists of the identification of objectives and attributes that reflect the needs of planners and decision makers when these models are used for water quality management planning. Ideally, the attributes should concern the effect of model information on improved decision making and the cost of model application. Practical difficulties with the first attribute necessitates substitution of surrogate attributes reflecting model appropriateness, resolution, and uncertainty. Common pollutant runoff models, in particular export coefficients and hydrology-driven simulation models, are found to have serious weaknesses on some of the attribute scales. The “top-down” approach leads to a set of desirable pollutant runoff model attributes; alternate modeling techniques are thus examined in order to identify promising future directions for model development. The focus of this examination is phosphorus, due to its importance in the eutrophication of surface waters. Models for both sediment-attached and dissolved phosphorus are considered. Among the conclusions is the belief that the partial contributing area concept can yield an effective yet simple simulation despite the variable and complex nature of runoff. 相似文献
16.
Michael D. Harvey Chester C. Watson 《Journal of the American Water Resources Association》1986,22(3):359-368
ABSTRACT: Incised channels are those in which an imbalance between sediment transport capacity and sediment supply has led to degradation of their beds. This is a frequent response to stream channelization, changes in land use, or lowering of base level. If the degradation causes a critical bank-height threshold to be exceeded, which is dependent on the geotechnical properties of the bank materials, then bank failure and channel widening follow. Interdependent adjustments of channel slope and cross-sectional area occur until a new state of dynamic equilibrium with the imposed discharge and sediment load is attained. These geomorphic adjustments can be described and quantified by using location-for-time substitution and a model of channel evolution can be formulated. Three approaches to rehabilitation of the degraded channels are possible; geomorphic, engineering and rational. The rational approach, which integrates elements of both the engineering and geomorphic approaches, is based on the channel evolution model, and it generally involves control of grade, control of discharge, or a combination of both. 相似文献
17.
Burchard H. Heede 《Journal of the American Water Resources Association》1972,8(3):523-530
ABSTRACT The influence of a forest on the formation of steps in two small streams of the Colorado Rocky Mountains was studied. Steps provided by logs fallen across the channel added to flow energy reduction. The streams required additional gravel bars to adjust to slope. Average step length between logs and gravel bars was strongly related to channel gradient and median bed material size. Based on the average number of log steps per 50 feet of channel, an average of 116 percent of gravel bars were added at Fool Creek and 60 percent at Deadhorse Creek. The latter had 52 percent more logs in the channel and therefore required less bed material movement than the former. Although these are “rushing mountain streams,” most flow velocities ranged between 0.5 and 2.5 f.p.s. Exponents of a function relating rate of change of depth or velocity to discharge indicated that dynamic stream equilibrium was attained. Implications for forest management are that sanitation cuts (removal of dead and dying trees) would not be permissible where a stream is in dynamic equilibrium and bed material movement should be minimized. 相似文献
18.
Barry P. Rochelle M. Robbins Church Warren A. Gebert David J. Graczyk William R. Krug 《Journal of the American Water Resources Association》1988,24(1):35-41
ABSTRACT: As part of the U.S. Environmental Protection Agency's effort to determine the long-term effects of acidic deposition on surface water chemistry, annual runoff was estimated for about 1000 ungaged sites in the eastern U.S. using runoff contour maps. One concern in using contour maps was that a bias may be introduced in the runoff estimates due to the size of the 1000 ungaged sites relative to the size of the watersheds used in developing the maps. To determine if a bias was present the relationship between the annual runoff (expressed as depth) and the watershed area for the Northeast (NE) and Southern Blue Ridge Province (SBRP) was tested using five regional data bases. One short-term data base (1984 Water Year, n = 531) and two long-term data bases (1940–57, n = 134 and 1951–80, n = 342) were used in the NE. In the SBRP one short-term database (1984 Water Year, n = 531) and one long-term data base (1951–80, n = 60) were used. For the NE and the SBRP, runoff was not directly correlated with watershed area using the five regional databases. Also, runoff normalized by precipitation was not related to watershed area. 相似文献
19.
Richard G. Heerdegen 《Journal of the American Water Resources Association》1974,10(4):813-817
ABSTRACT: A study of the length of the growing and dormant season in Pennsylvania by isoline interpolation from climatological data. Maps of the beginning and ending of the growing and dormant seasons, length of growing season and ratio of growing to dormant season are included. 相似文献
20.
William L. Jackson Bruce P. Van Haveren 《Journal of the American Water Resources Association》1984,20(5):695-703
Geomorphic, hydraulic and hydrologic principles are applied in the design of a stable stream channel for a badly disturbed portion of Badger Creek, Colorado, and its associated riparian and meadow complexes. The objective is to shorten the period of time required for a channel in coarse alluvium to recover from an impacted morphologic state to a regime condition representative of current watershed conditions. Channel geometry measurements describe the stream channel and the normal bankfull stage in relatively stable reaches. Critical shear stress equations were used to design a stable channel in noncohesive materials with dimensions which approximate those of less disturbed reaches. Gabion controls, spaced at approximately 300 m intervals, are recommended to help reduce the chance of lateral migration of the newly constructed channel. Controls are designed to allow for some vertical adjustment of the channel bed following increased bank stability due to revegetation. The flood plain is designed to dissipate flood flow energy and discourage multiple flood channels. The channel has approximately a 90 percent chance of remaining stable the first two years following construction, the time estimated for increased stability to occur due to revegetation. 相似文献