首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
ABSTRACT: Both L-moment and nonparametric frequency analyses were performed on a series of annual maximum floods from New Brunswick, Canada. The L-moment analysis concluded that the data were generated from a unimodal Generalized Extreme Value (GEV) distribution. However, the nonparametric frequency analysis indicated that a majority of stations followed nonunimodal mixed distributions since peak flows occur during different seasons and are the result of different generating mechanisms. The coupling of L-moment and nonparametric analyses facilitates mixed distribution identification. Thus, the nonparametric method helps in identifying underlying probability distribution, especially when samples arise from mixed distributions.  相似文献   

2.
A study is presented of the months in which the instantaneous annual maximum discharges from 66 watersheds occurred. The 2,052 flood values were measured on areas ranging from 2.4 through 214 square miles. The longest record was 60 years; the three shortest were 20. Pictorial results show both the number of floods for each month and individual discharges relative to the mean flood. A parameter which is weighted in this manner accounts for both the incidence and the magnitude of floods. Peculiarities of flood-timing charts, based on this parameter, are discussed with respect to watershed size, soils, geology, and land use. After anomolous watersheds had been assigned to special categories, flood-timing charts from most records exhibit a regional dichotomy dividing eastern from western Pennsylvania.  相似文献   

3.
ABSTRACT: In Illinois, a procedure has been developed to derive unit hydrographs for generating 100-year and probable maximum flood hydrographs, on the basis of 11 parameters that define the hydrograph shape very well. Regional regressions of these parameters with basin factors show very high correlation. Thus satisfactory values of parameters can be determined for ungaged areas or those with a few years' record. The nonlinearity in unit hydrographs derived from usual floods is largely attributed to mixing within-channel and overbank-flow flood events. To minimize the effects of nonlinearity and to derive unit hydrographa suitable for calculating spillway design floods, use of the proposed method of developing such hydrographs is recommended.  相似文献   

4.
The historical floods that have occurred since the seventeenth century were collected for a study area in southern Italy. Damages caused by floods, rainfall and the main anthropogenic modifications are discussed all together. The aim was to assess whether the frequency of floods is changing and, if so, whether these changes can be attributed to either rainfall and/or anthropogenic modifications. In 4?% of cases, mainly occurred in past centuries, floods damaged people. Hydraulic works, roads and private buildings were the more frequently damaged elements (25, 18 and 14?% of the cases, respectively). The annual variability of rainfall was discussed using an annual index. Short duration-high intensity rainfalls were characterized considering time series of annual maxima of 1, 3, 6, 12, and 24?h and daily rainfall. The rainfall shows a decreasing trend, in terms of both the annual maximum of short duration and the annual amount. The population has been progressively increasing since the sixteenth century, except during the years following the catastrophic 1908 earthquake. The rate of population growth has been very high since the second half of the twentieth century; the urbanized areas greatly increased, especially following the second half of the twentieth century. At the same time, the trend of damaging floods has been increasing, especially since the seventies. The analysis indicates that, despite a rainfall trend favourable towards a reduction in flood occurrence, floods damage has not decreased. This seems to be mainly the effect of mismanagement of land use modifications.  相似文献   

5.
A method of predicting probability distributions of annual floods is presented and is applied to the Fraser River catchment of British Columbia. The Gumbel distribution is found to adequately describe the observed flood frequency data. Using the estimated Gumbel parameters, discriminant analysis is performed to separate basins into flood regions. Within each region, regression analysis is used to relate physiographic and climatic variables to the means and standard deviations of the annual flood series. The regression equations are applied to four test basins and the results indicate that the method is suitable for an estimation of annual floods.  相似文献   

6.
ABSTRACT: Much of the Obion River in western Tennessee was channelized into the 1960s. Stage data from three stream-flow gaging stations on the Obion were used to determine how channelization affected flood frequency and annual maximum stage. Channelization affected the upper and lower Obion River differently. Flooding has become infrequent on the upper Obion River since channelization, even during the winter and spring which is the wettest time of year. In contrast, except for the winter months, there has been little effect on flood frequency on the lower Obion River where stage is highly dependent on the Mississippi River. The Mississippi River often backs up and floods the Obion River more than 50 km above its mouth and may contribute to flooding at an even greater distance upstream by reducing the water-surface gradient and slowing discharge. Channelization on the upper section of the river and many of the small tributaries has increased flow efficiency, but has also caused channel erosion and downstream deposition, reducing the cross-sectional channel area and possibly contributing to downstream flooding. Maximum annual stages at the upper and lower Obion River changed little. Therefore, the maximum surface area, submerged at least once each year, has been unaffected by channelization.  相似文献   

7.
ABSTRACT: The frequent high water levels in Chisago Chain of Lakes, located in east-central Minnesota, have caused extensive flood damages. Recent floods raised the concern of the local property owners and they pressured the Chisago County Board of Managers to initiate a study of alternative lake control levels. A study was carried out to identify potential flood control alternatives, screen out the most promising feasible alternatives, and recommend the most cost-effective flood control measure. Several flood control alternatives were considered - eight of them were analyzed and evaluated in detail. A statistical method was used to estimate the expected annual flood damages under existing and future conditions. The effect of all proposed control measures on the annual flood damage reductions (benefits) were determined. Detailed benefit/cost analyses were carried out to evaluate the economic feasibility of alternatives. The effect of potential flood control measures on the environment was also studied. The economic analysis of the most cost-effective alternative did not strongly support artificial lake level control, therefore the decision-making authorities were even more firm in their position to maintain the present condition and chose the Null Alternative as the most suitable alternative.  相似文献   

8.
ABSTRACT: Magnetically tagged particles were used to investigate the effects of sockeye salmon (Oncorhynchus nerka) and floods on the dispersion of coarse bed material in the Stuart‐Takla region, British Columbia, Canada. The dominant annual sediment transporting event in the channels is the snowmelt flood events, with lesser activity usually accomplished during summer floods. Annually in August, the channel bed material is reworked by the Early Stuart sockeye salmon spawning, as the fish excavate the streambed to deposit and bury their eggs. These nesting cavities are called redds. Results from 67 tracer recovery experiments over five years were highly variable, subject to the magnitude of floods and the returning population of salmon. Overall, the depositional pattern from nival flood events usually demonstrated a high degree of clast mobilization, long travel distances (up to 150 m), and mean depths of burial up to 18 cm. Summer flood events showed somewhat lower rates of mobilization, distances of travel, and depths of burial. Although the fish did not move the tracers very far, their effect on the bed was generally quite pervasive ‐ up to 100 percent of the clasts were mobilized, and the depth of burial was considerable (mean burial depths up to 14 cm). The amount of vertical mixing of sediment by salmon was often on the same order of magnitude as flood events. The significant vertical mixing of sediments by the fish has important implications for the mobility of sediment in the stream. Since any armoring layer formed during high flows throughout the year is subject to the bioturbation of salmon, this suggests that the transport threshold in the creeks remains relatively low. Salmon likely play an integral role in the sediment transport dynamics and annual sediment budget of the lower reaches of these creeks.  相似文献   

9.
ABSTRACT: The Fourier series method is proposed as a feasible non-parametric approach for the estimation of the density and distribution functions of annual floods. Clearly, the goodness of fit to empirical data improves as higher Fourier terms are incorporated, and the choice of a higher term depends on whether the inclusion of this term will reduce the fitting error to within a specified tolerance level. This method was applied to the flood data from eight rivers, and to data simulated from known distributions. The results are clearly better than other parametric methods, just like other non-parametric techniques currently used to estimate annual flood probabilities.  相似文献   

10.
Abstract: A mix of causative mechanisms may be responsible for flood at a site. Floods may be caused because of extreme rainfall or rain on other rainfall events. The statistical attributes of these events differ according to the watershed characteristics and the causes. Traditional methods of flood frequency analysis are only adequate for specific situations. Also, to address the uncertainty of flood frequency estimates for hydraulic structures, a series of probabilistic analyses of rainfall‐runoff and flow routing models, and their associated inputs, are used. This is a complex problem in that the probability distributions of multiple independent and derived random variables need to be estimated to evaluate the probability of floods. Therefore, the objectives of this study were to develop a flood frequency curve derivation method driven by multiple random variables and to develop a tool that can consider the uncertainties of design floods. This study focuses on developing a flood frequency curve based on nonparametric statistical methods for the estimation of probabilities of rare floods that are more appropriate in Korea. To derive the frequency curve, rainfall generation using the nonparametric kernel density estimation approach is proposed. Many flood events are simulated by nonparametric Monte Carlo simulations coupled with the center Latin hypercube sampling method to estimate the associated uncertainty. This study applies the methods described to a Korean watershed. The results provide higher physical appropriateness and reasonable estimates of design flood.  相似文献   

11.
Abstract: Bivariate flood frequency analysis offers improved understanding of the complex flood process and useful information in preparing flood mitigation measures. However, difficulties arise from limited bivariate distribution functions available to jointly model the correlated flood peak and volume that have different univariate marginal distributions. Copulas are functions that link univariate distribution functions to form bivariate distribution functions, which can overcome such difficulties. The objective of this study was to analyze bivariate frequency of flood peak and volume using copulas. Separate univariate distributions of flood peak and volume are first fitted from observed data. Copulas are then employed to model the dependence between flood peak and volume and join the predetermined univariate marginal distributions to construct the bivariate distribution. The bivariate probabilities and associated return periods are calculated in terms of univariate marginal distributions and copulas. The advantage of using copulas is that they can separate the effect of dependence from the effects of the marginal distributions. In addition, explicit relationships between joint and univariate return periods are made possible when copulas are employed to construct bivariate distribution of floods. The annual floods of Tongtou flow gauge station in the Jhuoshuei River, Taiwan, are used to illustrate bivariate flood frequency analysis.  相似文献   

12.
ABSTRACT: Measuring flood control benefits from estimated property damage in prior floods omits losses in the form of depressed values of land put to less valuable uses because of annual flooding. Covariance analysis of real property values in three urban areas differently situated around Lake Cumberland, Kentucky shows a much larger rate of increase, over a 15-year period, for the area receiving flood protection. This suggests that the economic benefits from a flood protection facility include these additional property value increases as well as the prevented property damage.  相似文献   

13.
ABSTRACT: In current hydrologic practice flood frequency estimates are usually based upon either the annual or the partial duration series of floods. Recurrence intervals generated by each series are not equivalent, however, and conversion of recurrence intervals from one series to the other is usually achieved by reference to a mathematical function developed by Langbein in 1949. Data collected on the Murrumbidgee River in New South Wales suggest, however, that the Langbein conversion function does not always provide a reliable means of comparing recurrence intervals. For discharges more frequent than the three year annual flood the Langbein function understates the discrepancy between the two sets of recurrence interval by approximately 35 percent. Langbein's own North American data appear to be consistent with those collected on the Murrumbidgee River.  相似文献   

14.
This paper describes the results of a study of hydrologic factors affecting floods from humid region in northeastern Ohio. Statistical multiple correlation analysis was used to relate floods to hydrologic and basin characteristics. Results of the study emphasize that the characteristics of floods from small and large watersheds are so significantly different that the two problems cannot be combined into one solution. The studies show that the most important hydrologic characteristics in large watersheds were: drainage area size and main channel slope. For small watersheds the most important hydrologic characteristics were: drainage area size, rainfall intensity and soil index. For watershed effect by reservoir storage it was found that: (1) small drainage areas are relatively more affected by storage than large drainage areas; (2) storage of less than 25 acre feet per square mile will not have significant effect on the mean annual flood (for drainage area above 70 square miles).  相似文献   

15.
Does place attachment and the consequent emotional connections and ties that people have with environments affect their preparedness for natural disasters, such as floods? This study took up this research question for the understudied geographical region of Orissa, India. In particular, investigation focused on three kinds of place attachment, viz. economic, genealogical, and religious. Contextualized scales for place attachment and flood preparedness were developed for a survey. Data were collected from 300 residents in flood prone areas. Validity and reliability of the scales were established. Overall, place attachment was found to significantly influence flood preparedness. Hierarchical regression analysis was performed to determine whether the three factors of place attachment influence flood preparedness. Controlling for confounding effects of age and family type, regression analysis revealed that people having genealogical and economic place attachment prepared for floods, but those with religious place attachment did not prepare for floods. The implications of these findings for future studies are described.  相似文献   

16.
ABSTRACT: A climate factor, CT, (T = 2–, 25-, and 100-year recurrence intervals) that delineates regional trends in small-basin flood frequency was derived using data from 71 long-term rainfall record sites. Values of CT at these sites were developed by a regression analysis that related rainfall-runoff model estimates of T-year floods to a sample set of 50 model calibrations. CT was regionalized via kriging to develop maps depicting its geographic variation for a large part of the United States east of the 105th meridian. Kriged estimates of CT and basin-runoff characteristics were used to compute regionalized T-year floods for 200 small drainage basins. Observed T-year flood estimates also were developed for these sites. Regionalized floods are shown to account for a large percentage of the variability in observed flood estimates with coefficients of determination ranging from 0.89 for 2-year floods to 0.82 for 100-year floods. The relative importance of the factors comprising regionalized flood estimates is evaluated in terms of scale (size of drainage area), basin-runoff characteristics (rainfall. runoff model parameters), and climate (CT).  相似文献   

17.
This article provides an overview of the use of risk-based analysis (RBA) in flood damage assessment, and it illustrates the use of Geographic Information Systems (GIS) in identifying flood-prone areas, which can aid in flood-mitigation planning assistance. We use RBA to calculate expected annual flood damages in an urban watershed in the state of Rhode Island, USA. The method accounts for the uncertainty in the three primary relationships used in computing flood damage: (1) the probability that a given flood will produce a given amount of floodwater, (2) the probability that a given amount of floodwater will reach a certain stage or height, and (3) the probability that a certain stage of floodwater will produce a given amount of damage. A greater than 50% increase in expected annual flood damage is estimated for the future if previous development patterns continue and flood-mitigation measures are not taken. GIS is then used to create a map that shows where and how often floods might occur in the future, which can help (1) identify priority areas for flood-mitigation planning assistance and (2) disseminate information to public officials and other decision-makers.  相似文献   

18.
ABSTRACT: A procedure of estimating instantaneous flood flows for various return periods on the Island of Newfoundland is presented. The procedure is based on annual maximum instantaneous flows rather than annual maximum daily-mean flows, as the latter requires the conversion of estimated daily-mean flows into instantaneous flows. Regression equations were developed for each of three homogeneous regions for the desired return periods. The flood flow estimation capability of the presented procedure is demonstrated to be better than any other currently available procedure on the Island.  相似文献   

19.
Bangladesh, situated on the delta of the Ganges, the Brahmaputra, and the Meghna rivers, experiences two distinct types of inundations: (a) river floods resulting from excessive runoff contributed by monsoon precipitation and (b) coastal floods induced by storm surges of tropical cyclones. The river floods are normal annual events and human settlements and agricultural practices have adapted admirably well to their regimes. Abnormal floods that occur once in every few years cause serious damage to crops and properties. To minimize flood losses, a number of modern engineering projects have been constructed within Bangladesh. However, the successful solution of the problem would probably require some international collaboration for basinwide unified systems planning, since large parts of the drainage basins of Bangladesh lie beyond its borders. In the absence of such collaboration, internal resources should be utilized for the construction of smaller public projects, such aspolders, and for encouraging and reinforcing various types of indigenous adjustments to floods. There are very few successful indigenous adjustments to coastal floods. Most of the structural solutions, such as community shelters and higher embankments, are expensive public projects that are probably beyond the means of the internal resources of the country.  相似文献   

20.
Disturbance and recovery of large floodplain rivers   总被引:7,自引:0,他引:7  
Disturbance in a river-floodplain system is defined as an unpredictable event that disrupts structure or function at the ecosystem, community, or population level. Disturbance can result in species replacements or losses, or shifts of ecosystems from one persistent condition to another. A disturbance can be a discrete event or a graded change in a controlling factor that eventually exceeds a critical threshold. The annual flood is the major driving variable that facilitates lateral exchanges of nutrients, organic matter, and organisms. The annual flood is not normally considered a disturbance unless its timing or magnitude is “atypical.” The record flood of 1973 had little effect on the biota at a long-term study site on the Mississippi River, but the absence of a flood during the 1976–1977 Midwestern drought caused short- and long-term changes. Body burdens of contaminants increased temporarily in key species, because of increased concentration resulting from reduced dilution. Reduced runoff and sediment input improved light penetration and increased the depth at which aquatic macrophytes could grow. Developing plant beds exerted a high degree of biotic control and were able to persist, despite the resumption of normal floods and turbidity in subsequent years. In contrast to the discrete event that disturbed the Mississippi River, a major confluent, the Illinois River, has been degraded by a gradual increase in sediment input and sediment resuspension. From 1958 to 1961 formerly productive backwaters and lakes along a 320-km reach of the Illinois River changed from clear, vegetated areas to turbid, barren basins. The change to a system largely controlled by abiotic factors was rapid and the degraded condition persists. Traditional approaches to experimental design are poorly suited for detecting control mechanisms and for determining the critical thresholds in large river-floodplains. Large river-floodplain systems cannot be manipulated or sampled as easily as small streams, and greater use should be made of man-made or natural disturbances and environmental restoration as opportunistic experiments to measure thresholds and monitor the recovery process. Coauthors are listed in alphabetical order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号