首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

2.
We present results of mercury (Hg) in surface waters and soils and an analysis of satellite imagery from the Tapajós River basin, Brazilian Amazon, and the Reserva Garimpeira do Tapajós, the legal gold mining district of the basin. Hg bound to suspended sediment was roughly 600 and 200 times the concentration of dissolved Hg per litre of water, in impacted and pristine areas, respectively. Suspended sediments thus represent the major pathway of river-borne Hg. Median concentrations of Hg in suspended load from both impacted and pristine waters were 134 ppb, and 80% of samples were below 300ppb-in the range of naturally occurring surficial materials in the tropics. Regionally, riverine Hg fluxes were proportional to the concentration of total suspended solids. This shows that the dominant source of Hg is the sediment itself rather than anthropogenic mercury discharge from the small-scale mines. To independently test this conclusion, a mass balance was performed. A conservative calculation of the annual export of mercury (Hg) from the Creporí River (a minimum) was 1.6 tonnes for the year 1998-it could be significantly larger. This amount of Hg is difficult to account for by anthropogenic discharge alone, confirming that enhanced physical erosion caused by sluicing and dredging operations is the dominant source of Hg. We therefore conclude that gold mining operations are primarily responsible for elevated Hg concentrations. The dominant source of contamination is not, however, the loss of Hg in the gold amalgamation process. Rather, the disturbance and mobilization of large quantities of Hg-rich sediment and floodplain soil into the water column during mining operations is the source of contamination. These findings shift the focus of remediation and prevention efforts away from Hg control toward soil and sediment erosion control. The minimization or elimination of Hg losses in the mining process remains important for the health of local peoples and environments, but keeping basin soils and sediments in place would be a much more effective means of minimizing Hg fluxes to the region's rivers. To gain a spatial and historical perspective on the source and extent of emissions, satellite imagery was used. We were able to reconstruct historical mining activity, locate impacted areas, and estimate historical Hg fluxes with the imagery. To do so, the spectral characteristics of satellite images were calibrated to the concentration of suspended sediment in the rivers, which, in turn, is proportional to the Hg concentration. This analysis shows that mining-induced sediment plumes have been a dominant source of sediment to the Tapajós River system for decades. As well, the intensity and location of these emissions has varied through time. For example, sediment discharge from the Creporí River was greater in 1985 than in 1998; and the tributaries on the west bank of the Tapajós were actively being mined in 1985 but had been abandoned in 1998. This type of information should greatly assist in understanding original and ongoing sources of emissions, and in managing prevention and remediation efforts.  相似文献   

3.
Abstract: Despite widespread interest, few sediment budgets are available to document patterns of erosion and sedimentation in developing watersheds. We assess the sediment budget for the Good Hope Tributary, a small watershed (4.05 km2) in Montgomery County, Maryland, from 1951‐1996. Lacking monitoring data spanning the period of interest, we rely on a variety of indirect and stratigraphic methods. Using regression equations relating sediment yield to construction, we estimated an upland sediment production of 5,700 m3 between 1951 and 1996. Regression equations indicate that channel cross‐sectional area is correlated with the extent of development; these relationships, when combined with historical land use data, suggest that upland sediment yield was augmented by 6,400 m3 produced by enlargement of first‐order and second‐order stream channels. We used dendrochronology to estimate that 4,000 m3 of sediment was stored on the floodplain from 1951‐1996. The sediment yield from the watershed, obtained by summing upstream contributions, totals 8,100 m3 of sediment, or 135 tons/km2/year. These results indicate that upland erosion, channel enlargement, and floodplain storage are all significant components of the sediment budget of our study area, and all three are approximately equal in magnitude. Erosion of “legacy” floodplain sediments originally deposited during poor agricultural practices of the 19th and early 20th Centuries has likely contributed between 0 and 20% of the total sediment yield, indicating that these remobilized deposits are not a dominant component of the sediment yield of our study area.  相似文献   

4.
Summary It has been established that the electrodes of the dialyser in a chloro-alkali plant in Eastern India release mercury beyond the permissible limits into the River Koel. Mercury in elemental form, as well as certain organo-mercury compounds, including methyl mercury, have been detected at a distance of 25 km from the discharge point. Even at a distance of 5–10 km, the mercury content of the sediment may be as high as 0.6–3.2 mg kg–1 above the value of sediment upstream of the plant. This sediment itself is contaminated, probably by battery and paint factories, etc., still further upstream. Thus, the chloro-alkali factory has contributed 60–320 times above the permissible limit (0.01 mg kg–1) of mercury release, at a distance of 5–10 km from the point of release. Furthermore, various phytoplankton and zooplankton have been contaminated, leading to very high mercury contents in certain fish. This food chain, therefore, threatens man himself.Dr Sajalendu Nanda is currently a Research Associate at Bangur Institute of Neurology in Calcutta. He possesses an MSc in Environmental Biology and a PhD in Ecology. His address for correspondence is c/o Dr P.K. Tapaswi, Professor-in-Charge at the Biological Sciences Division of the Indian Statistical Institute.  相似文献   

5.
Brakebill, John W., Scott W. Ator, and Gregory E. Schwarz, 2010. Sources of Suspended-Sediment Flux in Streams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model. Journal of the American Water Resources Association (JAWRA) 46(4): 757-776. DOI: 10.1111/j.1752-1688.2010.00450.x Abstract: We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain.  相似文献   

6.
The semiarid Carson River — Lahontan Reservoir system in Nevada, United States is highly contaminated with mercury (Hg) from historic mining with contamination dispersed throughout channel and floodplain deposits. Work builds on previous research using a fully dynamic numerical model to outline a complete conceptualization of the system that includes transport and fate of both sorbed and dissolved constituents. Flow regimes are defined to capture significant mechanisms of Hg loading that include diffusion, channel pore water advective flux, bank erosion, and overbank deposition. Advective flux of pore water is required to reduce dilution and likely represents colloidal‐mediated transport. Fluvial concentrations span several orders of magnitude with spatial and temporal trends simulated within 10‐24% error for all modeled species. Over the simulation period, 1991‐2008, simulated loads are 582 kg/yr (THg2+), 4.72 kg/yr (DHg2+), 0.54 kg/yr (TMeHg), and 0.07 kg/yr (DMeHg) with bank erosion processes the principal mechanism of loading for both total and dissolved species. Prediction error in the reservoir is within one‐order of magnitude and considered qualitative; however, simulated results indicate internal cycling within the receiving reservoir accounts for only 1% of the reservoir's water column contamination, with river channel sediment sources more influential in the upper reservoir and bank erosion processes having greater influence in the lower reservoir.  相似文献   

7.
An extensive and remote gold mining region located in the East of Venezuela has been studied with the aim of assessing the distribution and mobility of mercury in soil and the level of Hg pollution at artisanal gold mining sites. To do so, soils and pond sediments were sampled at sites not subject to anthropological influence, as well as in areas affected by gold mining activities. Total Hg in regionally distributed soils ranged between 0.02 mg kg(-1) and 0.40 mg kg(-1), with a median value of 0.11 mg kg(-1), which is slightly higher than soil Hg worldwide, possibly indicating long-term atmospheric input or more recent local atmospheric input, in addition to minor lithogenic sources. A reference Hg concentration of 0.33 mg kg(-1) is proposed for the detection of mining affected soils in this region. Critical total Hg concentrations were found in the surrounding soils of pollutant sources, such as milling-amalgamation sites, where soil Hg contents ranged from 0.16 mg kg(-1) to 542 mg kg(-1) with an average of 26.89 mg kg(-1), which also showed high levels of elemental Hg, but quite low soluble+exchangeable Hg fraction (0.02-4.90 mg kg(-1)), suggesting low Hg soil mobility and bioavailability, as confirmed by soil column leaching tests. The vertical distribution of Hg through the soil profiles, as well as variations in soil Hg contents with distance from the pollution source, and Hg in pond mining sediments were also analysed.  相似文献   

8.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

9.
Two‐stage ditches represent an emerging management strategy in artificially drained agricultural landscapes that mimics natural floodplains and has the potential to improve water quality. We assessed the potential for the two‐stage ditch to reduce sediment and nutrient export by measuring water column turbidity, nitrate (NO3?), ammonium (NH4+), and soluble reactive phosphorus (SRP) concentrations, and denitrification rates. During 2009‐2010, we compared reaches with two‐stage floodplains to upstream reaches with conventional trapezoid design in six agricultural streams. At base flow, these short two‐stage reaches (<600 m) reduced SRP concentrations by 3‐53%, but did not significantly reduce NO3? concentrations due to very high NO3? loads. The two‐stage also decreased turbidity by 15‐82%, suggesting reduced suspended sediment export during floodplain inundation. Reach‐scale N‐removal increased 3‐24 fold during inundation due to increased bioreactive surface area with high floodplain denitrification rates. Inundation frequency varied with bench height, with lower benches being flooded more frequently, resulting in higher annual N‐removal. We also found both soil organic matter and denitrification rates were higher on older floodplains. Finally, influence of the two‐stage varied among streams and years due to variation in stream discharge, nutrient loads, and denitrification rates, which should be considered during implementation to optimize potential water quality benefits.  相似文献   

10.
Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient‐enriched floodplain soils could pose a long‐term source of sediment and nutrients to downstream rivers.  相似文献   

11.
Sedimentation is emerging as a key issue in sustainable reservoir management. One approach to controlling reservoir sedimentation is to trap sediment in hydraulic structures upstream of the reservoir. In the 1,163‐km2 catchment of the Dahan River (Taiwan) over 120 “sabo” dams were built to reduce sediment yield to Shihmen Reservoir. Built in 1963 for water supply, Shihmen has lost over 40% of its 290‐Mm3 storage capacity to sedimentation. Most of these upstream structures were small, but three had capacities >9 Mm3. Field measurements and historical data from the Water Resources Agency show most smaller dams had filled with sediment by 1976. The three largest were full or nearly so by 2007, when one (Barlin Dam) failed, releasing a pulse of 7.5 Mm3, most of its 10.4 Mm3 stored sediment downstream. The Central Range of Taiwan is rapidly eroding (denudation rates 3‐6 mm/yr), so geologically high loads make sediment problems manifest sooner. Even in other environments, however, eventually small dams built upstream of large reservoirs are likely to fill themselves, creating multiple small sediment‐filled reservoirs, some located in sites inaccessible to mechanical removal. Our analysis suggests sabo dams do not offer a long‐term basis for controlling reservoir sedimentation in such a high‐sediment yield environment. Sustainable solutions must somehow pass sediment downstream, as would be accomplished by a sediment bypass around Shihmen Reservoir, as now being studied.  相似文献   

12.
ABSTRACT: Turbidity, total residues, settleable solids, vertical light extinction, and primary production were measured in mined and unmined streams located in the interior highlands of Alaska. Undisturbed streams had low turbidities (< 1 NTU), total residue concentrations averaging 120 mg 1?1, and undetectable settleable solids. During active mining, turbidity, total residues, and settleable solids levels in a moderately mined stream averaged 170 NTU, 201 mg 1?1, and < 0.1 ml 1?1, respectively. In a heavily mined stream, turbidity and total residues were two orders of magnitude higher than in unmined streams and settleable solids nearly always exceeded 0.2 ml 1?1. Vertical extinction coefficients and turbidity were positively correlated. In undisturbed streams gross primary productivity (g-O2m?2d?1) ranged from 0.20 shortly after spring breakup to a maximum of 1.20 in early fall. Productivity in the moderately mined stream was reduced by 50 percent while photosynthetic efficiency doubled. Primary production was undetectable in a heavily mined stream. Maximum standing crops of periphyton measured as chlorophyll a occurred in fall in an undisturbed stream after 13 weeks of exposure and ranged from 4.5 to 11.8 mg-chl a m?2. The highest chlorophyll a densities recorded in the moderately mined stream was 3.8 mg m?2, and no chlorophyl a was detected in the heavily mined stream.  相似文献   

13.
The influence of sedimentation rates on biogeochemistry of riparian forests was studied near ephemeral streams at Fort Benning, GA. Upper reaches of seven ephemeral streams had received varying rates of sedimentation stemming from erosion along unpaved roadways at the military installation. Two reference catchments were also included in the study. Decomposition of foliar litter, microbial C and N, N mineralization, and arthropod populations were compared within and among catchments. Rates of sedimentation over the past 25 yr ranged from 0 in references to 4.0 cm yr(-1). Decomposition rates declined exponentially with sedimentation rates as low as 0.20 to 0.32 cm yr(-1) and appeared to reach an equilibrium at a sedimentation rate of 0.5 cm yr(-1). Nitrogen mineralization and microbial C and N followed the same trend. Sedimentation had no discernible effect on arthropod populations. These data suggest that biogeochemical cycles may be altered by sedimentation rates that commonly occur in some floodplain forests.  相似文献   

14.
ABSTRACT: During the summers of 1982, 1983, and 1985, we assessed the effects of placer mining sedimentation on Arctic grayling, Thymallus arcticus, in the headwaters of Birch Creek, northeast of Fairbanks, Alaska. We compared differences between two streams (one that was undisturbed and one with mining activity upstream) near the confluence. Studies of caged fish demonstrated that, if grayling could not escape from streams carrying mining sediments, they would either die at high rates (sac fry) or suffer gill damage, starvation, and slowed maturation (age-O fingerlings and age-2 juveniles). Indirect effects of sedimentation, through loss of summer habitat for feeding and reproduction, may more severely affect grayling populations than the direct effects of sedimentation on the health and survival of individual fish.  相似文献   

15.
Mining of gravel for construction aggregate in California is regulated under the concept of ‘reclamation’, borrowed from open‐pit coal mines, which are recontoured and returned to productive use (such as agriculture) after mine closure. The concept works for dry terrace pits and can be adapted to creation of wildlife habitat in wet terrace pits. However, the state's regulatory structure also applies the concept to gravel extraction in the active channel, a dynamic system where the extraction site cannot be isolated from the surrounding environment. In this paper, I review reclamation in terrace and floodplain deposits but question the appropriateness of extending the traditional notion of reclamation to instream mining operations.  相似文献   

16.
ABSTRACT: Long-term land use and reservoir sedimentation were quantified and linked in a small agricultural reservoir-watershed system without having historical data. Land use was determined from a time sequence of aerial photographs, and reservoir sedimentation was determined from cores with 137Cs dating techniques. They were linked by relating sediment deposition to potential sediment production which was determined by the Universal Soil Loss Equation and by SCS estimates for gullied land. Sediment cores were collected from Tecumseh Lake, a 55-ha reservoir with a 1,189-ha agricultural watershed, constructed in 1934 in central Oklahoma. Reservoir sediment deposition decreased from an average of 5,933 Mg/yr from 1934 to 1954, to 3,179 Mg/yr from 1954 to 1962, and finally to 1,017 Mg/yr from 1962 to 1987. Potential sediment production decreased from an average of 29,892 to 11,122 and then to 3,589 Mg/yr for the same time periods as above, respectively. Reductions in deposition and sediment production corresponded to reductions in cultivated and abandoned cropland which became perennial pasture. Together, cultivated and abandoned cropland accounted for 59 percent of the watershed in 1937, 24 percent in 1954, and 10 percent in 1962. Roadway erosion, stream bank erosion, stored stream channel sediment, and long-term precipitation were considered, but none seemed to play a significant role in changing sediment deposition rates. Instead, the dominant factor was the conversion of fields to perennial pastures. The effect of conservation measures on reservoir sedimentation can now be quantified for many reservoirs where historical data is not available.  相似文献   

17.
Sage Creek in south‐central Wyoming is listed as impaired by the U.S. Environmental Protection Agency (USEPA) due to its sediment contribution to the North Platte River. Despite the magnitude of sediment impacts on streams, little research has been conducted to characterize patterns of sediment transport or to model suspended sediment concentration in many arid western U.S. streams. This study examined the relationship between stream discharge and suspended sediment concentration near the Sage Creek and North Platte River confluence from 1998 through 2003. The objectives were to determine patterns of stream discharge and suspended sediment concentration, produce a sediment prediction model, and compare sediment concentrations for the six‐year period. Stream discharge and suspended sediment transport responded rapidly to convective storms and spring runoff events. During the study period, events exceeding 0.23 m3/s accounted for 92 percent of the sediment load, which is believed to originate from erodible headwater uplands. Further analysis of these data indicates that time series modeling is superior to simple linear regression in predicting sediment concentration. Significant increases in suspended sediment concentration occurred in all years except 2003. This analysis suggests that a six‐year monitoring record was insufficient to factor out impacts from climate, geology, and historical sediment storage.  相似文献   

18.
ABSTRACT: Environmental background levels of Pb were measured in ponds, river waters, sediments, suspended sediments, rocks, and air particulates within the Kankakee watershed during the period of 1995 to 1999. Stable isotopic Pb distinguished airborne Pb and its incorporation into riverine wetland sediments from geogenic Pb measured in river sediments. The provenance of the naturally‐occurring Pb is from carbonate bedrock and contributes comparable concentrations in riverbank sediments (25.9–30.4 mg kg?1) as Pb found in wetland sediments (18.6–24.8 mg kg?1). Estimates of anthropogenic Pb contributions from airfall into the Kankakee wetlands were found to be near 0.43–0.71 Bq cm?2 yr?1 during 1995 to 1999. While leachable Pb data suggests the uppermost layers of pond sediments were disturbed, 210Pb analyses from undisturbed sedimentation suggests Pb‐bearing sediments accumulate approximately 0.46–0.51 cm yr?1 in the ponds within the riparian zones. Transboundary Pb pollution from aerosols of industrial Pb across the Great Lakes occurs, but Pb isotopy indicates that the Pb concentrations are comparable to natural concentrations of Pb in both waters and sediments within the Kankakee watershed.  相似文献   

19.
River floodplains provide critical habitat for a wide range of animal and plant species and reduce phosphorus and nitrogen loads in streams. It has been observed that baseflow‐dominated streams flowing through wetlands are commonly at or near bankfull and overflow their banks much more frequently than other streams. However, there is very little published quantitative support for this observation. The study focuses on a 1‐km reach of Black Earth Creek, a stream in the Midwestern United States (U.S.). We used one‐dimensional hydraulic modeling to estimate bankfull discharge at evenly spaced stream cross sections, and two‐dimensional modeling to quantitate the extent of wetland inundation as a function of discharge. We then used historical streamflow data from two U.S. Geological Survey gaging stations to quantitate the frequency of wetland inundation. For the with‐sediment case, the frequency of overbank conditions at the 38 cross sections in the wetland ranged from 3 to 85 days per year and averaged 43 days per year. Ten percent of the wetland was inundated for an average of 35 days per year. For the without‐sediment case, the frequency of overbank conditions ranged from 2.6 to 48 days per year and averaged 14 days per year. Also, 10% of the wetland was inundated for an average of 25 days per year. These unusually high rates of floodplain inundation are likely due in part to the very low stream gradient and shallow depths of overbank flow.  相似文献   

20.
Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号