首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
ABSTRACT: This paper summarizes key provisions of the Clinton Administration's proposals for change in the Clean Water Act. Two of the important themes for change are tougher controls for non-point source pollution and the use of market-based instruments. A detailed analysis of market-based abatement suggests limited potential for reducing costs. The keys to nonpoint source pollution control are clearer definition of property rights combined with changes in government programs that encourage polluting activities.  相似文献   

2.
ABSTRACT: The Rural Clean Water Program has provided a unique opportunity to study the economics of agricultural nonpoint source pollution control. Several implications for improving the economic efficiency of future agricultural nonpoint source pollution control programs can be drawn from the results. First, individual projects should be targeted towards water bodies that have water quality problems causing economic damages. Considerable variation can exist among areas in the magnitude of economic damages, which may not be proportional to physical impacts. Second, the relative costs and effectiveness of the practices selected to reduce the delivery of pollutants can vary dramatically from one location to another. Early identification and emphasis on cost-effective BMPs can substantially reduce project costs and may make a project economically justifiable that would not otherwise be so. Finally, some projects that do not hive potential economic benefits from water quality improvements exceeding government cost may have on-farm benefits from reduced costs and increased long-term yields that are sufficient to make total benefits (water quality and on-farm) exceed costs.  相似文献   

3.
ABSTRACT: Aquatic monitoring aims to assess the condition of aquatic habitats and biota. To make statements about condition, the range of human activities and the risks they pose to aquatic ecosystems must be identified. Assessing relative risk and placing sample sites on a human disturbance gradient is necessary for interpreting biological response and distinguishing human disturbance from natural controls in aquatic systems. We describe a process that uses readily available sources, such as topographic maps, aerial photographs, and field information, to identify and prioritize stream reach and watershed stressors for 102 streams in the mid-Appalachian region of the United States. All perceptible human alterations to riparian and upland areas along with their number, type, intensity, and extent of impact were recorded and ranked; a relative risk index was developed to assign scores to the watersheds. The resulting risk index scores were consistent with measures of stream condition based on water chemistry and benthic macroinvertebrates. The risk index gives a cost-effective, regional picture of the relative risk of impairment to aquatic ecosystems in the mid-Appalachian region of the USA and could be modified for other regions or ecosystem types.  相似文献   

4.
ABSTRACT: The role of environmental mitigation in permitting decisions under Section 404 of the Clean Water Act and the National Environmental Policy Act is examined, addressing the extent to which compensatory mitigation is acceptable. The role of mitigation is examined both generically and specifically: first in the requirements of the Clean Water Act and NEPA, and then in the case study of the proposed Two Forks Dam. In both cases, the paper describes dual purposes of environmental protection legislation and mitigation: to protect the biophysical environment and maintain associated human values. Mitigation is found to be sometimes necessary and acceptable as compensation for unavoidable impacts of project development. However, the Two Forks case exemplifies that compensatory mitigation has also been employed as a mechanism to facilitate project development when practicable alternatives entailing less environmental impact are available. Acceptance of compensatory mitigation in such cases violates both the Guidelines of the Clean Water Act and the intent of that Act and NEPA to protect the biophysical environment and human welfare. A recent memorandum of agreement between the Corps and the EPA clarifies this policy, and suggests that permit applications which rely on compensatory mitigation when impacts are available may be denied.  相似文献   

5.
Ribaudo, Marc O. and Jessica Gottlieb, 2011. Point‐Nonpoint Trading – Can It Work? Journal of the American Water Resources Association (JAWRA) 47(1):5‐14. DOI: 10.1111/j.1752‐1688.2010.00454.x Abstract: Water quality trading between point and nonpoint sources is of great interest as an alternative to strict command and control regulations on point sources for achieving water quality goals. The expectation is that trading will reduce the costs of water quality protection, and may speed compliance. The United States Environmental Protection Agency has issued guidance to the States on developing point‐nonpoint trading programs, and United States Department of Agriculture is encouraging farmer participation. However, existing point‐nonpoint trading programs have resulted in very few trades. Supply side and demand side impediments seem to be preventing trades from occurring in most trading programs. These include uncertainty over the number of discharge allowances different management practices can produce, high transactions costs of identifying trading partners, baseline requirements that eliminate low‐cost credits, the reluctance of point sources to trade with unfamiliar agents, and the perception of some farmers that entering contracts with regulated point sources leads to greater scrutiny and potential future regulation. Many of these problems can be addressed through research and program design.  相似文献   

6.
ABSTRACT: While significant nonpoint source (NIPS) pollution control progress has been made since passage of Section 319 in the 1987 Water Quality Act, existing federal legislation does not provide for the most timely and cost-effective NIPS pollution reduction. In this paper, we use findings from the Rural Clean Water Program and other nationwide agricultural NIPS pollution control programs, building on legislative history to recommend a coordinated and efficient direction for agricultural water quality legislation. A collaborative framework should be established to accomplish the goals of the Clean Water Act (CWA), Coastal Zone Management Act (CZMA), and the Conservation Title of the Farm Bill. Valuable elements of the 1990 CZMA amendments that created a coastal NIPS program should be subsumed into the CWA. The CWA should reemphasize use of receiving water quality criteria and standards and should allow states flexibility to tailor basin-scale NPS program implementation to local needs. Implementation should involve targeting of NIPS pollution control efforts to critical land treatment areas and use of systems of best management practices to address these targeted water quality problems. The 1995 Farm Bill should reorient production incentives toward water quality to support the collaborative framework, implementing ecologically sound source reduction principles. The Farm Bill and the CWA should contain interrelated provisions for voluntary, incentive-assisted producer participation and fallback regulatory measures. Such coordinated national water quality and Farm Bill legislation that recognizes the need for flexibility in state implementation is supported as the most rational and cost-effective means of attaining water quality goals.  相似文献   

7.
ABSTRACT: Since 1991, the U.S. Geological Survey has been conducting the National Water Quality Assessment (NAWQA) Program to determine the quality of the Nation's water resources. In an effort to obtain a better understanding of why pesticides are found in shallow ground water on a national scale, a set of factors likely to affect the fate and transport of two herbicides in the subsurface were examined. Atrazine and metolachlor were selected for this discussion because they were among the most frequently detected pesticides in ground water during the first phase of the NAWQA Program (1993 to 1995), and each was the most frequently detected compound in its chemical class (triazines and acetanilides, respectively). The factors that most strongly correlated with the frequencies of atrazine detection in shallow ground‐water networks were those that provided either: (1) an indication of the potential susceptibility of ground water to atrazine contamination, or (2) an indication of relative ground‐water age. The factors most closely related to the frequencies of metolachlor detection in ground water, however, were those that estimated or indicated the intensity of the agricultural use of metolachlor. This difference is probably the result of detailed use estimates for these compounds being available only for agricultural settings. While atrazine use is relatively extensive in nonagricultural settings, in addition to its widespread agricultural use, metolachlor is used almost exclusively for agricultural purposes. As a result, estimates of agricultural applications provide a less reliable indication of total chemical use for atrazine than for metolachlor. A multivariate analysis demonstrated that the factors of interest explained about 50 percent of the variance in atrazine and metolachlor detection frequencies among the NAWQA land‐use studies examined. The inclusion of other factors related to pesticide fate and transport in ground water, or improvements in the quality and accuracy of the data employed for the factors examined, may help explain more of the remaining variance in the frequencies of atrazine and metolachlor detection.  相似文献   

8.
ABSTRACT: Pollutants in urban storm water runoff, a significant and increasing fraction of pollutants in some waters of the U.S., originate from multiple activities. The industrial sector, one source category, is subject to federal and state-level storm water pollution prevention regulations, primarily General NPDES Permits that rely heavily on facility operators to identify themselves and develop appropriate site-specific pollutant controls. Degree of compliance is not readily determined and enforcement is inhibited because no publicly-available inventories contain data necessary to comprehensively identify facilities required to comply. This research evaluates the first stage of compliance, facility self-identification, concentrating on the motor-vehicle, transportation industry category using data at three scales: statewide, regional, and local or watershed. Data for California statewide and for the Los Angeles region show about 8 percent to 15 percent of motor-vehicle transportation facilities have complied with first-stage requirements. However, facility-specific evaluation in one Los Angeles County watershed suggests less than 50 percent of facilities in the industry conduct industrial activities of the kind covered by regulations; others need not comply. Results show strong variation by industry category. Second-stage compliance, follow-up reporting, is also evaluated for the Los Angeles region. About 17 percent to 34 percent of facilities completing first-stage requirements have also completed second-stage requirements.  相似文献   

9.
ABSTRACT: An index of watershed susceptibility to surface water contamination by herbicides could be used to improve source water assessments for public drinking water supplies, prioritize watershed restoration projects, and direct funding and educational efforts to areas where the greatest environmental benefit can be realized. The goal of this study is to use streamflow and herbicide concentration data to develop and evaluate a method for estimating comparative watershed susceptibility to herbicide loss. United States Geological Survey (USGS) concentration data for five relatively water soluble herbicides (alachlor, atrazine, cyanazine, metolachlor, and simazine) were analyzed for 16 Indiana watersheds. Correlation was assessed between observed herbicide losses and: (1) a herbicide runoff index using GIS‐based land use, soil type, SCS runoff curve number, tillage practice, herbicide use estimates, and combinations of these factors; and (2) predicted herbicide losses from a non‐point source pollution model (NAPRA‐Web, an Internet‐based interface for GLEAMS). The highest adjusted R2value was found between herbicide concentration and the runoff curve number alone, ranging from 0.25 to 0.56. Predictions from the simulation model showed a poorer correlation with observed herbicide loss. This indicates potential for using the runoff curve number as a simple herbicide contamination susceptibility index.  相似文献   

10.
ABSTRACT: An intensive water quality investigation was conducted in western North Carolina to determine whether water quality problems existed from point and nonpoint source inputs of sediment from surface mining activities. Depth integrated measurements of sediment transport and biological sampling of benthic communities indicated that very serious water quality problems were caused by erosion from a concentrated area of open pit mining for mica, kaolin, and feldspar. The erosion occurred on haul roads, active mines, inactive mines, and tailings disposal piles. The need for using specific “Best Management Practices” for erosion control on the mining operation is discussed. These practices need to be implemented to restore populations of trout to the degraded reaches of the river. Additional monitoring data are presented that indicate that the biological integrity of surface waters can be preserved in the vicinity of point source mining discharges when the operators utilize proper practices in settling and neutralizing their effluent. While much has been done to abate the point source discharges, attention now needs to be focused on the nonpoint sources of sediment from mining operations.  相似文献   

11.
ABSTRACT. The limited success of command-and-control policies for reducing nonpoint source (NPS) water pollution mandated under the Federal Water Pollution Control Act (FWPCA) has prompted increased interest in economic incentive policies as an alternative control mechanism. A variety of measures have been proposed ranging from fairly minor modifications of existing policies to substantial revisions including watershed-wide polices that rely on economic incentives. While greater use of economic incentive policies, such as environmental bonds and point/nonpoint source trading is being advocated in the reauthorization of the CWA, the expected effects of individual proposals will be modest. The characteristics of NPS pollution, namely uncertainty and asymmetrical information, underscores that there is no single, ideal policy instrument for controlling the many types of agricultural NPS water pollution. Some of the usual incentive-based policies, such as effluent taxes, are not well suited to the task. Individual incentive policies proposed for the reauthorized CWA, such as pollution trading or deposit/refund systems, are not broadly applicable for heterogeneous pollution situations. Economic incentive policies may be appropriate in some cases, and command-and-control policies will be preferable in others and may in fact complement incentive policies.  相似文献   

12.
ABSTRACT: Recent regulations require impact statements for major water development projects, including reservoirs that will be used for water supply, recreation, and pollution control. A water quantity/quality model was developed and used for making water quality projections of a proposed reservoir in Montgomery County, Maryland. The study area is uncommon in that there is an extensive water quality data base. The results indicate that land use changes will have a significant effect on water quality and that the proposed reservoir will improve the quality of the surface waters downstream from the reservoir. A major effect of land use changes is the increase in the variability of water quality.  相似文献   

13.
ABSTRACT: Nonstorm water discharges to municipal separate storm sewer systems (MS4s) are notable for spatial and temporal variability in volume, pollutant type, pollutant concentration, and activity of origin. The objective of this paper was to determine whether current technical knowledge and existing U.S. policy support an improved regulatory approach. The proposed policy would use type of discharge as a regulatory basis, merging the concepts of allowability of de minimis discharges and type-based statewide consistent rules. Specific research objectives were to comprehensively identify discharge types, characterize their prevalence in California, analyze relevant local and regional regulatory guidelines, and systematically evaluate opinions of experts about potential water quality impacts. Results demonstrate nonstorm water discharges were widespread in at least one sector, industrial facilities subject to a state permit; one discharge for every four facilities was reported in 1995, even though the permit explicitly prohibits such discharges. Clear consensus exists for minimal water quality concern for some discharge types when considering both municipal guidelines and experts’ opinions. In particular, condensate from a wide range of equipment and discharges from fire fighting equipment testing were found to be of low concern. Discharge types with consensus high concern were largely limited to discharges prohibited under other regulations, such as wastewater and hazardous waste management controls. Some discharge types where no consensus was identified, such as landscape irrigation, nevertheless generated concern for water quality impacts and appear to be relatively widespread. Available information supports technical feasibility of the proposed policy because at least some discharge types show strong consensus for de minimis impacts among regulatory guidelines and opinions of technical experts.  相似文献   

14.
ABSTRACT: The history of the Milwaukee water pollution abatement program is examined as a case study to investigate the costs of conflicting environmental policy. The recent U.S. Supreme Court decision concerning the Milwaukee case is described as a milestone in U.S. water pollution abatement policy which will help preclude the type of environmental policy conflict which has been found to be so costly to Milwaukee. The implications to U.S. water pollution abatement policy of the 13-year history of conflict in Milwaukee are presented.  相似文献   

15.
ABSTRACT: Surface water in the Long Creek watershed, located in western Piedmont region of North Carolina, was monitored from 1993 to 2001. The 8,190 ha watershed has undergone considerable land use and management changes during this period. Land use surveys have documented a 60 percent decrease in cropland area and a more than 200 percent increase in areas being developed into new homes. In addition, more than 200 conservation practices have been applied to the cropland and other agricultural land that remains in production. The water quality of Long Creek was monitored by collecting grab samples at four sites along Long Creek and continuously monitoring discharge at one site. The monitoring has documented a 70 percent reduction in median total phosphorus (TP) concentrations, with little reductions in nitrate and total Kjel‐dahl nitrogen, or suspended sediment levels. Fecal coliform (FC) and streptococci (FS) levels declined significantly downstream as compared to upstream during the last four years of monitoring. This decrease was attributed to the implementation of waste management practices and livestock exclusion fencing on three dairy operations in the watershed. Annual rainfall and discharge increased steadily until peaking in the third year of the monitoring period and varied while generally decreasing during the last four years of the project. An array of observation, pollutant concentration, and hydrologic data provide considerable evidence to suggest that the implementation of BMPs in the watershed have significantly reduced phosphorus and bacteria levels in Long Creek.  相似文献   

16.
ABSTRACT: Riparian zones perform a variety of biophysical functions that can be managed to reduce the effects of land use on instream habitat and water quality. However, the functions and human uses of riparian zones vary with biophysical factors such as landform, vegetation, and position along the stream continuum. These variations mean that “one size fits all” approaches to riparian management can be ineffective for reducing land use impacts. Thus riparian management planning at the watershed scale requires a framework that can consider spatial differences in riparian functions and human uses We describe a pilot riparian zone classification developed to provide such a framework for riparian management in two diverse river systems in the Waikato region of New Zealand. Ten classes of riparian zones were identified that differed sufficiently in their biophysical features to require different management. Generic “first steps” and “best practical” riparian management recommendations and associated costs were developed for each riparian class. The classification aims to not only improve our understanding of the effectiveness of riparian zone management as a watershed management tool among water managers and land owners, but to also provide a basis for deciding on management actions.  相似文献   

17.
ABSTRACT: Spatial distributions of nitrogen and phosphorus in water were related to environmental setting as part of a regional water-quality assessment of the Central Nebraska Basins. The environmental settings (Sandhills, Loess Hills, Glaciated Area, and Platte Valley) were characterized by different concentrations of nitrogen and phosphorus in ground water and stream water. Statistically significant differences in nitrate concentrations in both ground-water and stream-water samples were related to regional distributions of cropland and rangeland. Nitrate concentrations were larger, especially in shallow ground water, in environmental settings dominated by cropland and associated fertilizer use than in settings dominated by rangeland. Similarly, total-nitrogen and nitrate concentrations were relatively large in selected streams draining primarily cropland. Comparative concentrations of phosphorus in stream water on the basis of environmental setting were similar to those of nitrogen, although the largest phosphorus concentrations probably relate to wastewater discharge into small streams. Nitrogen and phosphorus concentrations in much of the Platte River apparently reflected the quality of water entering the study unit from upstream and limited base-flow contributions from within the Platte Valley itself.  相似文献   

18.
ABSTRACT: Pesticide runoff from dormant sprayed orchards is a major water quality problem in California's Central Valley. During the past several years, diazinon levels in the Sacramento and San Joaquin Rivers have exceeded water quality criteria for aquatic organisms. Orchard water management, via post‐application irrigation, and infiltration enhancement, through the use of a vegetative ground cover, are management practices that are believed to reduce pesticide loading to surface waters. Field experiments were conducted in Davis, California, to measure the effectiveness of these management practices in reducing the toxicity of storm water runoff. Treatments using a vegetative ground cover significantly reduced peak concentrations and cumulative pesticide mass in runoff for first flush experiments compared with bare soil treatments. Post‐application irrigation was found to be an effective means of reducing peak concentrations and cumulative mass in runoff from bare soil treatments, but showed no significant effect on vegetated treatments.  相似文献   

19.
Abstract:  This research evaluated the effectiveness of regulations for stormwater pollutants originating from industrial facilities. Industrial facilities discharging stormwater are subject to General Permits implemented by state and federal agencies, which require facility operators to identify themselves and to implement pollution prevention measures. An overlying system of permits require Municipal Separate Storm Sewer System operators to identify and inspect facilities in their jurisdictions capable of discharging substantial pollutant loads into stormwater conveyances, introducing more active regulation and strategic prioritization, but with unequal implementation in different urban regions. This research evaluated the interaction between the regulations and ways in which the regulations succeed, or fail, at protecting water quality. The research evaluated potential for pollutant discharges at 136 industrial facilities in Pinellas County, Florida, using telephone interviews; off-site facility visits; and on-site facility inspections, targeting four industrial categories: wood products; stone, clay, glass, and concrete products; fabricated metal products; and electronic products. Results documented that a large proportion of facilities subject to General Permits conduct few or no activities likely to produce stormwater pollutants, indicating that the regulations’ equal treatment of all facilities may constitute overregulation. The research developed a methodology to assess facilities using intensity of industrial activities exposed to stormwater, a rational measurement that could regularize municipal agencies’ requirements and prioritize implementation toward facilities with the potential to impact receiving water quality.  相似文献   

20.
ABSTRACT: Nutrient loading from beef pastures located within the northern Lake Okeechobee watershed in Florida, has been identified as a source of phosphorus contributing to the accelerated eutrophication of the lake. Since 1989 within the watershed, 557 agricultural drainage sites, mainly beef pasture, have been monitored for compliance under a regulatory program. Of those sites, 154 were actively monitored for phosphorus concentrations from October 1, 1998, to September 30, 1999. Of these 154 sites, 77 were considered to be out of compliance (OOC). An OOC site is defined as having runoff with a 12‐month average phosphorus concentration exceeding the permitted discharge limit. The average annual phosphorous load from the 77 OOC sites for an eight‐year study period from October 1, 1991, to September 30, 1999, was estimated using measured concentration values and simulated runoff obtained from an agricultural nonpoint source pollution model, CREAMS‐WT. The 77 OOC sites produced an estimated average annual 46 metric tonnes of phosphorus load, of which an estimated 22 tonnes of phosphorus reached Lake Okeechobee on an average annual basis. The remaining estimated average annual 24 tonnes of phosphorus load was retained by streams and wetlands in the discharge transport system between the sites and the lake. The estimated average annual load reaching Lake Okeechobee from the OOC sites represented 11 percent of the phosphorus load above a five‐year average annual target load for the lake. However, the OOC site drainage areas represented only 3 percent of the northern watershed that drains into the lake. Of the 77 OOC sites, 12 sites had an average annual phosphorus loading rate equal to or greater than 3.0 kg/ha and were placed on the priority list for the Critical Restoration Project in the Lake Okeechobee watershed. To estimate the possible phosphorus load reductions from the 77 sites, two scenarios were modeled. The first scenario reduced phosphorus concentrations in runoff to the permitted discharge limits under the Lake Okeechobee regulatory program. The second scenario changed current land uses to native rangeland with an estimated annual offsite total phosphorus areal loading rate of 0.114 kg/ha. These two scenarios are hypothetical with assumed concentration values and loading rate. Model results showed that the first management scenario reduced the average annual phosphorus load to the lake by an estimated 15 tonnes. The second scenario reduced the average annual phosphorus load to the lake by an estimated 21 tonnes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号