首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
/ Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining  相似文献   

2.
Pit lakes are a common reclamation strategy for open pit mines; however, there is a concern about their water quality and suitability as fish habitat because they are often contaminated by metals or metalloids. This study assessed the exposure of fish and invertebrates to selenium (Se) and other metals and metalloids in pit lakes formed by open pit coal mining in Tertiary (thermal coal) and in Cretaceous (metallurgical coal) bedrock. Juvenile hatchery rainbow trout, Oncorhynchus mykiss, and brook trout, Salvelinus fontinalis, were stocked into two thermal coal pit lakes (water Se < 2 μg/L, low water Se) and two metallurgical coal pit lakes (water Se > 15 μg/L, high water Se). Se accumulation in stocked fish and concentrations in invertebrates were characterized over a period of 2 years. In the metallurgical pits, invertebrates had higher Se concentrations and fish accumulated Se to higher levels (exceeding USEPA tissue Se guidelines) than biota in the thermal pits. Rainbow and brook trout accumulated similar concentrations of Se in their muscle and exhibited a similar relationship between whole-body and muscle Se concentrations. These results may be used by resource managers to assess compliance with whole-body tissue Se guidelines and to determine if pit lakes in coal mining areas pose a significant Se risk to wildlife or human health. The high Se exposure in metallurgical coal pits indicates that under the current mining and reclamation strategy, these lakes are not suitable for management as recreational “put and take” fisheries.  相似文献   

3.
ABSTRACT: By field investigations and planning, it is profitable to rehabilitate gravel pits as recreational lakes in urban areas. Some of the important aspects to be considered are topography, soil, surface water and groundwater. A case study is presented and some general guidelines in the rehabilitation process are given. This kind of a use for derelict land is important at the present time as there is a growing demand for recreational lakes in urban areas.  相似文献   

4.
Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.  相似文献   

5.
ABSTRACT: Gold was discovered in Georgia in 1829 and mined until about 1940 in the Dahionega Gold Belt of the north Goorgia Piedmont. Streams there are characterized by gravel beds and fine sandy to silty banks. Historical mining-related alluvium is clearly distinguished from prehistoric alluvium because it is contaminated with mercury (Hg), which was used by miners to amalgamate gold. Mercury concentrations in historical floodplain sediments range from 0.04 to 4.0 mg kg?1, exceeding background (0.04 mg kg1) by as much as two orders of magnitude near the core of the mining district and decreasing in the downstream direction. Low levels (≤ 0.1 mg kg1) of Hg are established within about 10–15 km from the source mines. The mercury-contaminated sediment exceeds sediment quality guidelines set by many agencies, and is a significant nonpoint source for mercury pollution. Hydraulic mining of saprolite, which began in 1868, and cutting of forests associated with mining and settlement caused unusually rapid sedimentation (1–3 cm yr?l) and floodplain aggradation in the region. After mining ceased, streams adjusted by downcutting and forming an historical-age terrace. A new floodplain is currently being formed as streams migrate lateraily and erode the mining-related sediment of the historical terrace. High magnitude floods are contained within the confines of the historical terrace, thus limiting quantities of over-bank sedimentation, causing channel bank erosion, and transmitting high sediment yields to reservoirs in the region.  相似文献   

6.
Whittemore, Donald O., 2012. Potential Impacts of Stormwater Runoff on Water Quality in Urban Sand Pits and Adjacent Groundwater. Journal of the American Water Resources Association (JAWRA) 48(3): 584-602. DOI: 10.1111/j.1752-1688.2011.00637.x Abstract: Entrance of stormwater runoff into water-filled pits and adjacent aquifers is a contamination concern. The water and sediment quality in several sand pits and surrounding groundwater in Wichita, Kansas, were studied to comprehensively address stormwater runoff impact. The pits are used for residential development after sand and gravel mining. Water samples were analyzed for inorganic constituents, bacteria, and 252 organic compounds, and pit sediments for inorganic components and 32 organic chemicals. Although many pesticide and degradate compounds were found in the pit and well waters, none of these chemicals exceeded existing health levels. Other organic contaminants were detected in the waters, with those exceeding health levels at one site attributed to an undiscovered groundwater contamination plume and not to stormwater runoff. Persistent insecticides and polychlorinated biphenyls detected in sediment of two pits are related to the age of residential development. The concentration distributions of pesticides and other organics at most of the sites, as well as iron, manganese, and ammonia patterns in downgradient well waters relative to upgradient well and pit waters, indicate that groundwater quality at the sites is affected by contaminants entering the pit surface waters. Thus, although current stormwater runoff does not appear to have contaminated sand-pit water and adjacent groundwater above health levels, the data show that the potential exists if stormwater became polluted.  相似文献   

7.
ABSTRACT: The Hallett Quarry gravel pit lakes are an active sand and gravel extraction operation located 0.4 km north of the City of Ames, Iowa. During periods of drought, these lakes serve as a supplemental water supply for Ames. A modified version of the Vollenweider input-output model was used to predict future water quality under various watershed land use, drainage, and lake configurations. The dominant factor controlling the future water quality of the lakes was found to be the nutrient input. It is recommended that a management plan to protect the future water quality should be oriented towards reducing the sources of phosphorus to the lakes.  相似文献   

8.
The Deckers Creek watershed in northern West Virginia (USA), containing a land area of 166 km2 (63 mi2), has a long history of industrial development and attendant environmental abuses from both land and water pollution practices. The water in Deckers Creek was sampled in 1974 at 29 locations along the main stem and resampled in 1999-2000 to determine water quality changes over this 25-year period. Water samples were analyzed for pH, acidity, alkalinity, iron, and calcium at both times, while aluminum, manganese, zinc, and fecal coliform (FC) bacteria densities were added in 1999-2000. Water at almost all sampling points showed lower acidity and metal contents in 1999-2000 compared with 1974. Water pH increased at the mouth from 5.4 in 1974 to 6.0 in 1999-2000. Acidity and iron concentrations were decreased an average of 70% in the upper stretches of the creek. However, one major untreated point source of water from an abandoned underground mining complex continues to degrade the quality of the creek in its lower stretches. In the upper section, the water quality in Deckers Creek has improved due to decreased surface and underground coal mining activities, reclamation of abandoned and recently permitted surface mined lands, and natural healing of past land use scars from timbering and mining over time. The decrease in mineral extraction activities and the reclamation of disturbed lands has occurred due to the passage and enforcement of water quality and land reclamation laws and regulations. More time and additional reclamation projects will continue to enhance the water quality in the creek. Improved water chemistry in the majority of the creek, however, shows the previously unnoticeable biological contamination from sewage inputs.  相似文献   

9.
Oil production operations produce waste fluids that may be stored in pits, open tanks, and other sites accessible to wildlife. Birds visit these fluid-filled pits and tanks (“oil pits”), which often resemble water sources, and may become trapped and die. The US Fish and Wildlife Service (USFWS) has a program to reduce these impacts by locating problem pits, documenting mortality of protected wildlife species, and seeking cleanup or corrective action at problem pits with the help of state and federal agencies regulating the oil industry. Species identification and verification of protected status for birds recovered from oil pits are performed at the USFWS National Fish and Wildlife Forensics Laboratory. From 1992 to 2005, a minimum of 2060 individual birds were identified from remains recovered from oil pits, representing 172 species from 44 families. The taxonomic and ecological diversity of these birds indicates that oil pits pose a threat to virtually all species of birds that encounter them. Ninety-two percent of identified bird remains belonged to protected species. Most remains identified at the Forensics Laboratory were from passerines, particularly ground-foraging species. Based on Forensics Laboratory and USFWS field data, oil pits currently cause the deaths of 500,000–1 million birds per year. Although law enforcement and industry efforts have produced genuine progress on this issue, oil pits remain a significant source of mortality for birds in the United States.  相似文献   

10.
6 m3) following extensive gravel extraction from the channel, this evolution appears to be reversed today, showing that this river is capable of rehabilitating itself. The watershed supplies the river with 50,000 m3/yr of material and part of this load (30,000 m3/yr) is extracted. Although it is theoretically possible to reverse this phenomenon, it is unacceptable for the local economy as man-made installations unadapted to flooding were developed along the river during the period of incision. Today, the development policy is in conflict with the maintenance and the preservation of natural sediment transport and deposition.  相似文献   

11.
利用航拍技术与GIS(GeographicInformationSystem,地理信息系统,简称GIS)技术相结合,通过对航拍照片的校正、DEM(DigitalElevationModel,数字高程模型,简称DEM)高程数据提取、占地面积与土地利用状况分析、土地复垦方案的编制、土方量的测算等,探讨了航拍技术在油气田土地管理工作中的应用。  相似文献   

12.
The application of composite or consolidated tailings (CT) technology provides Alberta's oil sands industry with a means of reducing the volume of the fines fraction in extraction tailings and allows for faster reclamation and revegetation of mining sites. This study examined the effects of coagulant aids (gypsum and alum), used in the production of CT, on the ion content, growth, and survival of greenhouse-grown red-osier dogwood (Cornus sericea L. subsp. sericea). Seedlings were planted in gypsum-CT and alum-CT substrates, and compared with those planted in reclamation material (salvaged peat and till). The seedlings were bottom-watered with one of the following: (i) Hoagland mineral solution prepared in deionized water (Epstein, 1972); (ii) Hoagland solution in gypsum-based CT release water; or (iii) Hoagland solution in alum-based CT release water. Pore water of CT substrates and CT release waters had similar chemical characteristics, including salinity levels. However, plants in CT substrates had higher concentrations of ions (particularly Na and B), reduced growth, and higher mortality than plants in reclamation material and treated with CT waters. The presence of H2S indicated low-oxygen conditions in the CT substrates, while in the reclamation materials with CT release water treatments, no evidence of sulfides was observed. Low-oxygen conditions in the CT substrate treatments may have interfered with plant exclusion mechanisms for Na and B. Therefore, substrate properties may modify responses of reclamation plants to pore water chemistry due to the effects on oxygen availability to roots.  相似文献   

13.
Abstract: Many arctic lakes freeze completely in winter. The few that retain unfrozen water for the entire winter period serve as overwintering fish habitat. In addition to serving as fish habitat, water in arctic lakes is needed for industrial and domestic use. Permits for water extraction seek to maximize water use without impacting dissolved oxygen (DO) levels and endangering fish habitat. The relationship between lake volume, winter DO budget, and extraction of water through pumping has historically not been well understood. A management model that could estimate end‐of‐winter DO would improve our understanding of the potential impacts of different management strategies. Using under‐ice DO measurements (November to April) taken from two natural lakes and one flooded gravel mine on the North Slope of Alaska, a physically based model was developed to predict end‐of‐winter DO concentration, water‐column DO profiles, and winter oxygen depletion rate in arctic lakes during periods of ice cover. Comparisons between the measured and model‐predicted oxygen profiles in the three study lakes suggest that the depth‐based DO modeling tool presented herein can be used to adequately predict the amount of DO available in arctic lakes throughout winter.  相似文献   

14.
随着近几年滩涂围垦工程的进行,为了协调围垦开发与生态环境保护之间的矛盾,生态型围垦的理念应运而生。本文对"生态型围垦"的内涵进行了深入辨析,提出了沿海滩涂生态型围垦概念模型,针对围垦工程规划前期、工程实施和运行管理3个阶段的特点,从管理、环境和生态3个方面提出相应指标,初步构架了生态型围垦指标体系,为沿海滩涂围垦的可持续及匡围区域生态环境管理提供技术支撑。  相似文献   

15.
Land subsidence caused by extensive groundwater pumping has become a factor which cannot be ignored in the sustainable exploitation of groundwater resources. The Hangzhou–Jiaxing–Huzhou Plain is one of the locations with China’s most severe land subsidence problems; the region has experienced dramatic land subsidence since the 1960s. Historical records of groundwater extraction, hydraulic head, and land subsidence show the latter to be the result of continual and excessive extraction of groundwater from deep confined aquifers. This study reconstructs land subsidence using an integrated regional groundwater flow and land subsidence model. The model is calibrated using land subsidence and groundwater level measurements from 1996 to 2007. Simulation results reproduce the cones of depression for groundwater heads and nadirs of land subsidence reasonably well. The calibrated model is used to evaluate the efficacy of land subsidence prevention plans from 2008 to 2010, and to predict future land subsidence over the next decade considering several groundwater exploitation scenarios. The results show the main cause of land subsidence to be inelastic compaction of the aquifer system resulting from continuously declining water levels. The model reveals that while the area of land subsidence will continue to extend, the rate of this extension may be significantly decreased by reduction of groundwater extraction. If the current land subsidence prevention and reclamation plans are continued and surface water diversion projects implemented, though land subsidence cannot be halted, the rate at which it is occurring can be effectively reduced.  相似文献   

16.
ABSTRACT: Cores were obtained from several tree species located both on a river floodplain and a nearby terrace. A ratio of annual tree growth on floodplains to terrace growth was developed and shown to be related to the annual river discharge. Growth ratios from the time prior to written records can therefore be used to reconstruct river discharge and infer past unrecorded flood frequency. Oak and basswood ratios yielded the best models for discharge reconstruction, whereas those of elm and birch were less useful. This method permits reconstruction of river discharge from an assemblage of growth cores obtained within a relatively small area.  相似文献   

17.
Nitrous oxide (N?O) is a long-lived and potent greenhouse gas produced during microbial nitrification and denitrification. In developed countries, centralized water reclamation plants often use these processes for N removal before effluent is used for irrigation or discharged to surface water, thus making this treatment a potentially large source of N?O in urban areas. In the arid but densely populated southwestern United States, water reclamation for irrigation is an important alternative to long-distance water importation. We measured N?O concentrations and fluxes from several wastewater treatment processes in urban southern California. We found that N removal during water reclamation may lead to in situ N?O emission rates that are three or more times greater than traditional treatment processes (C oxidation only). In the water reclamation plants tested, N?O production was a greater percentage of total N removed (1.2%) than traditional treatment processes (C oxidation only) (0.4%). We also measured stable isotope ratios (δN and δO) of emitted N?O and found distinct δN signatures of N?O from denitrification (0.0 ± 4.0 ‰) and nitrification reactors (-24.5 ± 2.2 ‰), respectively. These isotope data confirm that both nitrification and denitrification contribute to N?O emissions within the same treatment plant. Our estimates indicate that N?O emissions from biological N removal for water reclamation may be several orders of magnitude greater than N?O emissions from agricultural activities in highly urbanized southern California. Our results suggest that wastewater treatment that includes biological nitrogen removal can significantly increase urban N?O emissions.  相似文献   

18.
从民族生态学的角度分析哈尼梯田民族生态学实践,阐述了哈尼梯田民族生态系统可持续发展的限制性因素.从认识论、方法论和技术三个层面构建了哈尼梯田民族生态系统的可持续发展模式,旨在为民族生态系统的可持续发展和新的文化生态伦理观的确立提供有益借鉴.  相似文献   

19.
The oil sands industry in Alberta (Canada) has developed the composite tailings (CT) process to reduce the fluid fine tails resulting from the processing of oil sands. This process uses a chemical coagulant (gypsum or alum) to produce aggregated fines (clay), so they are retained with the coarse sand fraction of the extraction tailings to form CT, from which fines-free water is released relatively quickly compared with untreated tailings. The resulting CT and CT waters are saline-sodic, with Na+, SO4(2-), and Cl- being the dominant ions. When freshly deposited, the CT deposits are too soft for access by reclamation equipment, and the time required for these deposits to remove the water sufficiently to support traffic is uncertain. A greenhouse study was designed to determine the suitability of barley (Hordeum vulgare L.) for reclamation of fresh CT deposits and to evaluate benefits of peat amendments. This study assessed germination, early plant growth, chlorophyll content, and survival of barley growing in alum- and gypsum-treated CT, with and without peat amendment. Ion and trace metal accumulation in the root and shoot tissues of barley was determined. Amendment of CT with peat improved germination, survival, and growth of barley, but did not prevent leaf injury (probably due to Na and Cl- and possibly multiple nutrient deficiency). Field studies will be undertaken to validate our greenhouse results suggesting that barley could be used to improve dewatering of the freshly deposited substrates, reduce soil erosion, and facilitate leaching of ions by root penetration into the substrate.  相似文献   

20.
Summary The private enterprise development of a series of disused gravel pits, situated just 20 miles from the centre of London, into an attractive and commercially viable theme park for leisure and recreation is described.

相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号