首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agricultural pests are not restricted to crops, but often simultaneously or successively use different cultivated and uncultivated hosts. Nevertheless, the source-sink role of cultivated and uncultivated habitats in the life cycle of crop pests remains poorly understood. This is largely due to the difficulty of tracking displacements of small organisms in agricultural landscapes. We used stable-isotope ratios in order to infer the natal host plant of individuals of the English grain aphid Sitobion avenae colonizing wheat fields in autumn. We showed that among the numerous plant sources of S. avenae, maize, which has been intensively grown in western France since the 1960s, provided most aphids that attack wheat fields early in autumn. This study illustrates how insect pests respond to land-use changes within a relatively short period of time, rapidly acquiring a new host that in turn affected their population biology considerably by playing a pivotal role on their annual life cycle.  相似文献   

2.
A population of Gemma gemma (Totten) was investigated for 6 yr (1978–1983) in Connecticut, USA to determine the relationship between population fluctuations, life tables of successive cohorts and factors affecting life table parameters. Seasonal cycles occurred from 1978–1981. Although density was not abnormally low in summer of 1982, the population declined rapidly thereafter because individuals present during the reproductive season were smaller than the minimal size for reproduction. Forecasts of population size from a time series model based on past densities were compared to forecasts from the intrinsic rates of growth from four separate clam life tables. The latter approach was less precise but more consistent at successfully predicting temporal trends in population abundance. Two factors were identified that potentially controlled population density and structure during the study. Correlational evidence indicated that intraspecific competition between juveniles and adults was intense in 1978 but was reduced during subsequent years. This interaction reduced the size and subsequent fecundity of the young-of-the-year. Correlational evidence also indicated that low salinity in spring of 1978, 1979, 1982 and 1983 reduced juvenile survival, but not that of adults. Qualitative evidence indicated that a third factor, predation, might also have affected G. gemma's population size and structure.  相似文献   

3.
Summary Three-spined sticklebacks (Gasterosteus aculeatus) showed a relative preference for a familiar prey size when hunting for two sizes of Daphnia magna in high density. This result is not compatible with the apparent size hypothesis. Ten groups were investigated, each consisting of two stickle-backs tested under three consecutive experimental conditions, to establish whether the function of the preference for a familiar prey size could be avoidance of competition.First, the relative competitive ability of each fish was determined by the proportion it consumed of three series of 60 medium-sized daphnia, offered pairwise. Second, during the consumption of five series of 30 pairs, each consisting of a large and a small daphnia, it was determined how many items each fish caught of each prey size. As handling times were equal for both prey types, the larger prey size was more profitable. There was a significant correlation between relative competitive ability and mean proportion of large daphnia in the diet. In the last series the less successful competitiors caught a higher proportion of small prey than in the first series. Finally, each fish was given the choice between large and small daphnia in the absence of its competitor. The sticklebacks chose a diet similar to the one they had been allowed to select previously with competition. The previously more successful competitors concentrated on large daphnia, whereas the poorer competitors fed as generalists but not unselectively.The fish probably learned the distance from which they had recently attacked familiar prey successfully. This sure attack distance depends on the fish's competitive ability.  相似文献   

4.
紫茎泽兰(Eupatorium adenophorum Spreng),菊科多年生草本或半灌木植物,是世界性入侵杂草,也是目前危害我国最为严重的外来入侵杂草之一,对我国西南地区农业、畜牧业的良好发展以及生态环境造成了严重的危害。种子繁殖是紫茎泽兰初始建群,尤其是远距离传播的主要途径。环境对种子萌发具有决定性作用,对于物种的生存具有重要意义。因此,本试验通过室内生测法分析了紫茎泽兰种子保存时间、种内竞争及环境温度、盐分胁迫及水分胁迫等因素对紫茎泽兰种子萌发的影响。结果表明:紫茎泽兰种子寿命较长,存放2.5年的种子萌发率仍可达45.67%;紫茎泽兰种子萌发时种内竞争作用较强,能够显著降低其种子的萌发势和萌发率;紫茎泽兰种子萌发所需的温度范围较宽,在12~30℃温度范围内均可萌发,且随环境温度的升高,种子萌发越快,萌发率越高,高温(30℃/22℃)处理下种子萌发率可达到90.33%;同时发现,紫茎泽兰种子萌发对环境中的盐分浓度十分敏感,0.25%的盐质量分数即可达到种子的致死水平,1%的盐质量分数处理即可使种子完全丧失萌发能力。紫茎泽兰种子较耐水淹环境,浸水处理6 d的种子的萌发率仍高达65.68%。由此表明,紫茎泽兰种子不适应盐碱环境,而适宜于温暖潮湿的自然环境。这为探析紫茎泽兰种子萌发活动生理提供了一定的基础资料,同时,也为有效、安全的防除紫茎泽兰提供了科学依据。  相似文献   

5.
Lima M  Ernest SK  Brown JH  Belgrano A  Stenseth NC 《Ecology》2008,89(9):2594-2603
Using long-term data on two kangaroo rats in the Chihuahuan Desert of North America, we fitted logistic models including the exogenous effects of seasonal rainfall patterns. Our aim was to test the effects of intraspecific interactions and seasonal rainfall in explaining and predicting the numerical fluctuations of these two kangaroo rats. We found that logistic models fit both data sets quite well; Dipodomys merriami showed lower maximum per capita growth rates than Dipodomys ordii, and in both cases logistic models were nonlinear. Summer rainfall appears to be the most important exogenous effect for both rodent populations; models including this variable were able to predict independent data better than models including winter rainfall. D. merriami was also negatively affected by another kangaroo rat (Dipodomys spectabilis), consistent with previous experimental evidence. We hypothesized that summer rainfall influences the carrying capacity of the environment by affecting seed availability and the intensity of intraspecific competition.  相似文献   

6.
In this study a conceptual framework for assessing the statistical properties of a non-stochastic spatial interpolator is developed through the use of design-based finite population inference tools. By considering the observed locations as the result of a probabilistic sampling design, we propose a standardized weighted predictor for spatial data starting from a deterministic interpolator that usually does not provide uncertainty measures. The information regarding the coordinates of the spatial locations is known at the population level and is directly used in constructing the weighting system. Our procedure captures the spatial pattern by means of the Euclidean distances between locations, which are fixed and do not require any further assessment after the sample has been drawn. The predictor for any individual value turns in a ratio of design-based random quantities. We illustrate the predictor design-based statistical properties, i.e. asymptotically p-unbiasedness and p-consistency, for simple random sampling without replacement. An application to a couple of environmental datasets is presented, for assessing predictor performances in correspondence of different population characteristics. A comparison with the equivalent non-spatial predictor is presented.  相似文献   

7.
The species richness of sessile organisms on settlement panels on a coral reef was measured by the slope of a regression of loge number of species against loge area of sample. At a well illuminated site where panels were colonised by algae, the species richness of algae was 19% smaller on surfaces grazed by fishes than on protected surfaces. At a second site in a cave, the species richness of animals on grazed surfaces was 20% greater than on protected surfaces. These results are discussed in the light of differences between the sites. The contrasting effects of predation at the two sites are probably the result of more selective predation at the cave site than at the other site.  相似文献   

8.
Ramirez KS  Lauber CL  Knight R  Bradford MA  Fierer N 《Ecology》2010,91(12):3463-70; discussion 3503-14
Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) through anthropogenic activities. Although the effects of increased N inputs on plant communities have been reasonably well studied, few comparable studies have examined impacts on whole soil bacterial communities, though they play critical roles in ecosystem functioning. We sampled soils from two long-term ecological research (LTER) experimental N gradients, both of which have been amended with NH4NO3; a grassland at Cedar Creek (27 years of N additions) and an agricultural field at Kellogg Biological Station (8 years of N additions). By examining shifts in bacterial communities across these contrasting ecosystem types, we could test competing hypotheses about the direct and indirect factors that might drive bacterial responses to elevated N inputs. Bacterial community structure was highly responsive to N additions. We observed predictable and consistent changes in the structure of the bacterial communities across both ecosystem types. Our results suggest that bacterial communities across these gradients are more structured by N and/or soil carbon availability than by shifts in the plant community or soil pH associated with the elevated nitrogen inputs. In contrast to the pronounced shifts in bacterial community composition and in direct contrast to the patterns often observed in plant communities, increases in N availability did not have consistent effects on the richness and diversity of soil bacterial communities.  相似文献   

9.
Previous studies of interference competition have shown an asymmetric effect on intake rate of foragers on clumped resources, with only subordinate individuals suffering. However, the food distributions in these studies were uniform or highly clumped, whereas in many field situations, food aggregation is intermediate. Here we investigated whether food distribution (i.e., uniform, slightly clumped, and highly clumped) affects the behavioral response of mallards foraging alone or competing with another. Although the amount of food was the same in all distributions, the mallards reached higher intake rates, visited fewer patches, and showed longer average feeding times in the highly clumped distribution. Competing mallards had lower intake rates on the slightly clumped than on the uniform or highly clumped food distributions. Subordinates generally visited more patches and had shorter feeding times per patch, but their intake rates were not significantly lower than those of dominants. Therefore, we propose that subordinates do not necessarily suffer from interference competition in terms of intake rate, but do suffer higher search costs. In addition, although dominants had significantly higher average feeding times on the best quality patches of the highly clumped food distribution, such an effect was not found in the slightly clumped distribution. These findings indicate that in environments where food is aggregated to a lesser extent, monopolization is not the best strategy for dominants. Our results suggest that interference experiments should use food distributions that resemble the natural situation animals are faced with in the field.  相似文献   

10.
11.
12.
Burkepile DE  Hay ME 《Ecology》2006,87(12):3128-3139
Pervasive overharvesting of consumers and anthropogenic nutrient loading are changing the strengths of top-down and bottom-up forces in ecosystems worldwide. Thus, identifying the relative and synergistic roles of these forces and how they differ across habitats, ecosystems, or primary-producer types is increasingly important for understanding how communities are structured. We used factorial meta-analysis of 54 field experiments that orthogonally manipulated herbivore pressure and nutrient loading to quantify consumer and nutrient effects on primary producers in benthic marine habitats. Across all experiments and producer types, herbivory and nutrient enrichment both significantly affected primary-producer abundance. They also interacted to create greater nutrient enrichment effects in the absence of herbivores, suggesting that loss of herbivores produces more dramatic effects of nutrient loading. Herbivores consistently had stronger effects than did nutrient enrichment for both tropical macroalgae and seagrasses. The strong effects of herbivory but limited effects of nutrient enrichment on tropical macroalgae suggest that suppression of herbivore populations has played a larger role than eutrophication in driving the phase shift from coral- to macroalgal-dominated reefs in many areas, especially the Caribbean. For temperate macroalgae and benthic microalgae, the effects of top-down and bottom-up forces varied as a function of the inherent productivity of the ecosystem. For these algal groups, nutrient enrichment appeared to have stronger effects in high- vs. low-productivity systems, while herbivores exerted a stronger top-down effect in low-productivity systems. Effects of herbivores vs. nutrients also varied among algal functional groups (crustose algae, upright macroalgae, and filamentous algae), within a functional group between temperate and tropical systems, and according to the metric used to measure producer abundance. These analyses suggest that human alteration of food webs and nutrient availability have significant effects on primary producers but that the effects vary among latitudes and primary producers, and with the inherent productivity of ecosystems.  相似文献   

13.
Unplanned natural and anthropogenic disasters provide unique opportunities for investigating the influence of perturbations on population vital rates and species recovery times. We investigated the potential effects of a major pesticide spill by comparing annual survival rates using mark-recapture techniques on a riparian bat species, Yuma Myotis (Myotis yumanensis). Demography and population dynamics for most bat species remain poorly understood despite advances in mark-recapture estimation and modeling techniques. We compared survival and population growth rates of two roost populations exposed to a large chemical (metam sodium) spill in the upper Sacramento River in Northern California with two roost populations outside the contaminated area from 1992 to 1996. Hypotheses about long-term effects of the spill on female juvenile and adult survival were tested using an information-theoretic approach (AIC). Working hypotheses included effects of age, chemical spill, and time trend on survival. Female adult survival was higher than female juvenile survival across all sites, suggesting stage-specific mortality risks. Model-averaged estimates of female juvenile survival in the contaminated area (0.50-0.74) were lower than in control roosts (0.60-0.78) for each year in the study, suggesting that the spill may have reduced juvenile survival for several years. Female adult survival (0.73-0.89) did not appear to be strongly affected by the spill during the years of the study. There was an increase in survival for both stage-classes across all populations during the study period, which may have been caused by the end of an extended drought in California in the winter of 1993. The spill-affected population was in decline for the first year of the study as indicated by an estimated growth rate (lambda) < 1, but population growth rates increased during the four-year period.  相似文献   

14.
Solbreck C  Ives AR 《Ecology》2007,88(6):1466-1475
Although most long-term studies of consumer-resource (e.g., predator-prey) interactions select species showing cyclic population dynamics, strong consumer-resource interactions can also produce irregular, noncyclic dynamics. Here, we present a case in which a seed predator, the tephritid fruit fly Euphranta connexa, shows fluctuations in density of more than two orders of magnitude over a 22-year period. To explain these fluctuations, we analyzed a stage-specific data set to quantify the density-dependent and density-independent components of larval survivorship and realized fecundity. Both larval survivorship and realized fecundity were strongly density dependent. Larval survivorship dropped from 0.62 at low larval density to 0.081 at high larval density, whereas fecundity dropped from 84.3 to 0.32 eggs per individual, more than a 100-fold decrease. We divided density-independent variation in E. connexa population dynamics into components for variability in (1) larval survivorship, (2) realized fecundity, and (3) annual fruit abundance. Of these components, 96% of the density-independent variance in per capita population growth rates was caused by fluctuations in fruit abundance. This highlights the importance of the strong consumer-resource interactions in driving fluctuations in E. connexa abundance. It also demonstrates that E. connexa dynamics are remarkably simple, and aside from the 4% of unexplained variance in per capita population growth rates, our understanding of E. connexa dynamics is remarkably complete.  相似文献   

15.
Buenau KE  Rassweiler A  Nisbet RM 《Ecology》2007,88(12):3022-3031
Many species that compete for space live on heterogeneous landscapes and interact at local scales. The quality, amount, and structure of landscapes may have considerable impact on the ability of species to compete or coexist, yet basic models of space competition do not include that level of detail. We model space competition between two species with positive feedback through recruitment facilitation, which creates the potential for alternative stable states to occur. We compare the predictions of a spatially implicit model with a simulation model that includes explicit space and landscape structure. We create structured landscapes in which we specify the amount of habitat and degree of fragmentation and ask how landscape structure, dispersal strategy, and scale affect the presence of alternative stable states, or bistability. We find that structured landscapes can reduce the range of parameter values that lead to bistability in our model, but they do not eliminate bistability. The type of landscape and the dispersal distance for each species also influence the amount of environmental change needed for abrupt community shifts to occur. Coexistence of the two competitors is possible under certain conditions when connectivity is low. Consequently, landscape structure may lead to considerable disparity between the predictions of simple models and actual dynamics on complex landscapes during environmental change.  相似文献   

16.
We used population models to explore the effects of the organochlorine contaminant p,p'-DDE and fluctuations in vole availability on the population dynamics of Burrowing Owls (Athene cunicularia). Previous work indicated an interaction between low biomass of voles in the diet and moderate levels of p,p'-DDE in Burrowing Owl eggs that led to reproductive impairment. We constructed periodic and stochastic matrix models that incorporated three vole population states observed in the field: average, peak, and crash years. We modeled varying frequencies of vole crash years and a range of impairment of owl demographic rates in vole crash years. Vole availability had a greater impact on owl population growth rate than did reproductive impairment if vole populations peaked and crashed frequently. However, this difference disappeared as the frequency of vole crash years declined to once per decade. Fecundity, the demographic rate most affected by p,p'-DDE, had less impact on population growth rate than adult or juvenile survival. A life table response experiment of time-invariant matrices for average, peak, and crash vole conditions showed that low population growth under vole crash conditions was due to low adult and juvenile survival rates, whereas the extremely high population growth under vole peak conditions was due to increased fecundity. Our results suggest that even simple models can provide useful insights into complex ecological interactions. This is particularly valuable when temporal or spatial scales preclude manipulative experimental work in the field or laboratory.  相似文献   

17.
Qian H  White PS  Song JS 《Ecology》2007,88(6):1440-1453
Conclusions from past studies on the roles that historical and regional factors and contemporary and ecological factors have played in regulating large-scale patterns of species richness have been controversial. Conflicting past results were likely affected by differences in the range of environments analyzed and the scales of observation. Eastern North America and eastern Asia are ideal regions for examining the relative effects of historical and regional factors and contemporary and ecological factors on large-scale patterns of plant species richness because these two regions are closely matched in terms of climate and because their floras originated from the same paleoflora but have experienced different histories of development since the late Paleogene when climate cooling caused their separation. We report on a comprehensive data set of 471 floras ranging from 10 km2 to 4.7 x 10(6) km2 and spanning a wide range of climate and latitude (from 21 degrees to 55 degrees N) to examine whether the contribution of region relative to climate persists from small to large floras and increases from cooler to warmer climates. We found that eastern Asia is richer than eastern North America when sample area, maximum elevation, and climate are accounted for, that this difference diminishes toward higher latitudes, and that elevation plays a much stronger role in eastern Asia than in eastern North America. Our analysis reconciles contemporary/ecological and historical/regional explanations for species richness variation and helps explain why different conclusions have been reached by different authors working in the same geographical areas: the strength of the region effect itself varies with location and range of climatic conditions of the observations.  相似文献   

18.
Two marine diatoms, Phaeodactylum tricornutum (Bohlin) and Thalassiosira pseudonana (Hasle and Heimdal), were grown both separately and together in batch cultures on a mixture of waste water and seawater enriched with different components of f medium. At 17°C, the maximum division rates of the two species were statistically indistinguishable. The waste water-seawater mixture used proved to have insufficient Si, relative to N and P, for the growth of T. pseudonana, which requires approximately 5x10-14 g-at Si cell-1 to divide at a maximum rate. P. tricornutum, on the other hand, although capable of taking up nearly 9x10-15 g-at Si cell-1, could sustain maximum rates of division with 4.3x10-18 g-at Si cell-1 or less. No allelopathic interaction between the two species could be detected. We conclude that P. tricornutum enjoys a considerable competitive advantage over T. pseudonana in a waste water-seawater-based mariculture system that is not supplemented with Si. Although Si proved necessary for T. pseudonana to complete more successfully with the other diatom, the presence of excess amounts of Si is not necessarily sufficient for the maintenance of T. pseudonana in mixed continuous culture with P. tricornutum: other factors, such as light-related or photoperiod-related growth response, are believed to determine the ultimate outcome of competition between these algae in light-limited continuous culture.Contribution No. 3999, from the Woods Hole Oceanographic Institution.Communicated by M.R. Tripp, Newark  相似文献   

19.
An individual-based model was developed to predict the population dynamics of Daphnia magna at laboratory conditions from individual life-history traits observed in experiments with different feeding conditions. Within the model, each daphnid passes its individual life cycle including feeding on algae, aging, growing, developing and – when maturity is reached – reproducing. The modelled life cycle is driven by the amount of ingested algae and the density of the Daphnia population. At low algae densities the population dynamics is mainly driven by food supply, when the densities of algae are high, the limiting factor is “crowding” (a density-dependent mechanism due to chemical substances released by the organisms or physical contact, but independent of food competition).  相似文献   

20.
In honeybees, as in other highly eusocial species, tasks are performed by individual workers, but selection for worker task phenotypes occurs at the colony level. We investigated the effect of colony-level selection for pollen storage levels on the foraging behavior of individual honeybee foragers to determine (1) the relationship between genotype and phenotypic expression of foraging traits at the individual level and (2) how genetically based variation in worker task phenotype is integrated into colony task organization. We placed workers from lines selected at the colony level for high or low pollen stores together with hybrid workers into a common hive environment with controlled access to resources. Workers from the selected lines showed reciprocal variation in pollen and nectar collection. High-pollen-line foragers collected pollen preferentially, and low- pollen-line workers collected nectar, indicating that the two tasks covary genetically. Hybrid workers were not intermediate in phenotype, but instead showed directional dominance for nectar collection. We monitored the responses of workers from the selected strains to changes in internal (colony) and external (resource) stimulus levels for pollen foraging to measure the interaction between genotypic variation in foraging behavior and stimulus environment. Under low-stimulus conditions, the foraging group was over-represented by high-pollen-line workers. However, the evenness in distribution of the focal genetic groups increased as foraging stimuli increased. These data are consistent with a model where task choice is a consequence of genetically based response thresholds, and where genotypic diversity allows colony flexibility by providing a range of stimulus thresholds. Received: 3 May 1999 / Received in revised form: 22 December 1999 / Accepted: 23 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号