首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncertainty plays a key role in the economics of climate change, and research on this topic has led to a substantial body of literature. However, the discussion on the policy implications of uncertainty is still far from being settled, partly because the uncertainty of climate change comes from a variety of sources and takes diverse forms. To reflect the multifaceted nature of climate change uncertainty better, an increasing number of analytical approaches have been used in the studies of integrated assessment models of climate change. The employed approaches could be seen as complements rather than as substitutes, each of which possesses distinctive strength for addressing a particular type of problems. We review these approaches—specifically, the non-recursive stochastic programming, the real option analysis, and the stochastic dynamic programming—their corresponding literatures and their respective policy implications. We also identify the current research gaps associated with the need for further developments of new analytical approaches.  相似文献   

2.
Fisheries and water resource managers are challenged to maintain stable or increasing populations of Chinook salmon in the face of increasing demand on the water resources and habitats that salmon depend on to complete their life cycle. Alternative management plans are often selected using professional opinion or piecemeal observations in place of integrated quantitative information that could reduce uncertainty in the effects of management plans on population dynamics. We developed a stochastic life cycle simulation model for an endangered population of winter-run Chinook salmon in the Sacramento River, California, USA with the goal of providing managers a tool for more effective decision making and demonstrating the utility of life cycle models for resource management. Sensitivity analysis revealed that the input parameters that influenced variation in salmon escapement were dependent on which age class was examined and their interactions with other inputs (egg mortality, Delta survival, ocean survival). Certain parameters (river migration survival, harvest) that were hypothesized to be important drivers of population dynamics were not identified in sensitivity analysis; however, there was a large amount of uncertainty in the value of these inputs and their error distributions. Thus, the model also was useful in identifying future research directions. Simulation of variation in environmental inputs indicated that escapement was significantly influenced by a 10% change in temperature whereas larger changes in other inputs would be required to influence escapement. The model presented provides an effective demonstration of the utility of life cycle simulation models for decision making and provides fisheries and water managers in the Sacramento system with a quantitative tool to compare the impact of different resource use scenarios.  相似文献   

3.
This paper presents a new concept to include uncertainty management in energy and environmental planning models developed in algebraic modeling languages. SETSTOCH is a tool for linking algebraic modeling languages with specialized stochastic programming solvers. Its main role is to retrieve from the modeling language a dynamically ordered core model (baseline scenario) that is sent automatically to the stochastic solver. The case presented herein concerns such a study realized with the IEAMARKAL model used by many research teams around the world.  相似文献   

4.
In the current era, water is a significant resource for socio-economic growth and the protection of healthy environments. Properly controlled water resources are considered a vital part of development, which reduces poverty and equity. Conventional Water system Management maximizes the existing water flows available to satisfy all competing demands, including on-site water and groundwater. Therefore, Climatic change would intensify the specific challenges in water resource management by contributing to uncertainty. Sustainable water resources management is an essential process for ensuring the earth's life and the future. Nonlinear effects, stochastic dynamics, and hydraulic constraints are challenging in ecological planning for sustainable water development. In this paper, Adaptive Intelligent Dynamic Water Resource Planning (AIDWRP) has been proposed to sustain the urban areas' water environment. Here, an adaptive intelligent approach is a subset of the Artificial Intelligence (AI) technique in which environmental planning for sustainable water development has been modeled effectively. Artificial intelligence modeling improves water efficiency by transforming information into a leaner process, improving decision-making based on data-driven by combining numeric AI tools and human intellectual skills. In AIDWRP, Markov Decision Process (MDP) discusses the dynamic water resource management issue with annual use and released locational constraints that develop sensitivity-driven methods to optimize several efficient environmental planning and management policies. Consequently, there is a specific relief from the engagement of supply and demand for water resources, and substantial improvements in local economic efficiency have been simulated with numerical outcomes.  相似文献   

5.
A superiority–inferiority-based inexact fuzzy stochastic programming (SI-IFSP) model was developed for planning municipal solid waste management systems under uncertainty. The SI-IFSP approach represents a new attempt to tackle multiple uncertainties in objective function coefficients which are beyond the capabilities of existing inexact programming methods. Through introducing the concept of fuzzy random boundary interval, SI-IFSP is capable of reflecting multiple uncertainties (i.e., interval values, fuzzy sets, probability distributions, and their combinations) in both the objective function and constraints, leading to enhanced system robustness. The developed SI-IFSP method was applied to a case study of long-term municipal solid waste management. Useful solutions were generated. A number of decision alternatives could be generated based on projected applicable conditions, reflecting the compromise between system optimality and reliability as well as the tradeoffs between economic and environmental objectives. Moreover, the consequences of system violations could be quantified through introducing a set of economic penalties, reflecting the relationships between system costs and constraint violation risks. The results suggest that the proposed SI-IFSP method can explicitly address complexities in municipal solid waste management systems and is applicable to practical waste management problems.  相似文献   

6.
Water resource system planners make decisions that guide water management policy. The fundamental tools for assessing management and infrastructure strategies are combined hydro-economic models of river basins (RBHE models). These models have improved the economic efficiency of water use in situations of competition for scarce water resources. In RBHE models, a groundwater model is coupled with surface water models of the various water resources. Today, the groundwater models used in an RBHE model can be of two types: cell models or numerical models. Cell models are easy to use, but they are too simple to realistically describe the geology and hydrology of the area under investigation. Numerical models, in contrast, are closer to the physical behavior of the aquifer. However, the vast quantity of data to be analyzed makes them impractical for many management scenarios. Moreover, the calibrations of these high-resolution models are generally difficult and sensitive to the variation of parameters, especially when boundary conditions are dynamic. This is the case when dynamic river data or dynamic surface lake data are present. In this work, a compartmental cell model is built on the hydrogeology of the aquifer. In this approach, the hydrogeology of the aquifer and the dynamic boundary conditions are treated with separate models. A general mathematical formulation is presented where the calibration stage, the validation stage, and the prediction stage are formulated as a series of sub-model calibrations and solved using a general least squares routine. With this approach, it becomes possible to treat both the water level and the pumping rate in each cell as variables to be predicted. In most of the models, the pumping rates are known and the goals of the computation are to estimate the groundwater level. However, when for political or technical reasons access to some of the wells is difficult, the pumping rates are only partially known. Then, both groundwater levels and pumping rates are variables to be predicted by the groundwater model. A computer program was developed using MATLAB, with a Visual Basic graphical user interface using COM technology to access the advanced mathematical libraries. The approach was implemented with a real case study of the Yarkon–Taninim aquifer in Israel. The results indicate that the method is more stable than the classical approach.  相似文献   

7.
Integrated Assessment (IA) is an evolving research community that aims to address complex societal issues through an interdisciplinary process. The most-widely used method in Integrated Assessment is modeling. The state of the art in Integrated Assessment modeling is described in this paper in terms of history, general features, classes of models, and in terms of the strengths and weaknesses, and the dilemmasand challenges modelers face. One of the key challenges is the issue of uncertainty management. The paper outlines the sources and types of uncertainty modelers are confronted with. It then discusses how uncertainties are currently managed inIntegrated Assessment modeling, on which evaluation it is argued that complementary methods are needed that allow for pluralistic uncertainty management. The paperfinalises with discussing pluralistic concepts and approaches that are currently explored in the IA community and that seem promising in view of the challenge to incorporate explicitly more than one hidden perspective in models.  相似文献   

8.
In this study, an interval-parameter fuzzy-stochastic two-stage programming (IFSTP) approach is developed for irrigation planning within an agriculture system under multiple uncertainties. A concept of the distribution with fuzzy-interval probability (DFIP) is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets, and probability distributions. IFSTP integrates the interval programming, two-stage stochastic programming, and fuzzy-stochastic programming within a general optimization framework. IFSTP incorporates the pre-regulated water resources management policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised amounts are not delivered. IFSTP is applied to an irrigation planning in a water resources management system. Solutions from IFSTP provide desired water allocation patterns, which maximize both the system’s benefits and feasibility. The results indicate that reasonable solutions are generated for objective function values and decision variables; thus, a number of decision alternatives can be generated under different levels of stream flows.  相似文献   

9.
This paper examines uncertainty research in Impact Assessment (IA) and the focus of attention of the IA scholarly literature. We do so by first exploring ‘outside’ the IA literature, identifying three main themes of uncertainty research, and then apply these themes to examine the focus of scholarly research on uncertainty ‘inside’ IA. Based on a search of the database Scopus, we identified 134 journal papers published between 1970 and 2013 that address uncertainty in IA, 75% of which were published since 2005. We found that 90% of IA research addressing uncertainty focused on uncertainty in the practice of IA, including uncertainty in impact predictions, models and managing environmental impacts. Notwithstanding early guidance on uncertainty treatment in IA from the 1980s, we found no common, underlying conceptual framework that was guiding research on uncertainty in IA practice. Considerably less attention, only 9% of papers, focused on uncertainty communication, disclosure and decision-making under uncertain conditions, the majority of which focused on the need to disclose uncertainties as opposed to providing guidance on how to do so and effectively use that information to inform decisions. Finally, research focused on theory building for explaining human behavior with respect to uncertainty avoidance constituted only 1% of the IA published literature. We suggest the need for further conceptual framework development for researchers focused on identifying and addressing uncertainty in IA practice; the need for guidance on how best to communicate uncertainties in practice, versus criticizing practitioners for not doing so; research that explores how best to interpret and use disclosures about uncertainty when making decisions about project approvals, and the implications of doing so; and academic theory building and exploring the utility of existing theories to better understand and explain uncertainty avoidance behavior in IA.  相似文献   

10.
Integrating human health into prospective impact assessments is known to be challenging. This is true for both approaches: dedicated health impact assessments (HIA) as well as inclusion of health into more general impact assessments. Acknowledging the full range of participatory, qualitative, and quantitative approaches, this study focuses on the latter, especially on computational tools for quantitative health modelling. We conducted a survey among tool developers concerning the status quo of development and availability of such tools; experiences made with model usage in real-life situations; and priorities for further development. Responding toolmaker groups described 17 such tools, most of them being maintained and reported as ready for use and covering a wide range of topics, including risk & protective factors, exposures, policies, and health outcomes. In recent years, existing models have been improved and were applied in new ways, and completely new models emerged. There was high agreement among respondents on the need to further develop methods for assessment of inequalities and uncertainty. The contribution of quantitative modeling to health foresight would benefit from building joint strategies of further tool development, improving the visibility of quantitative tools and methods, and engaging continuously with actual and potential users.  相似文献   

11.
In this study, an integrated fuzzy-stochastic linear programming model is developed and applied to municipal solid waste management. Methods of chance-constrained programming and fuzzy linear programming are incorporated within a general interval-parameter mixed-integer linear programming framework. It improves upon the existing optimization methods with advantages in uncertainty reflection, data availability, and computational requirement. The model can be used for answering questions related to types, times and sites of solid waste management practices, with the objective of minimizing system costs over the planning horizon. The model can effectively reflect dynamic, interactive, and uncertain characteristics of municipal waste management systems. In its solution process, the model is transformed into two deterministic submodels, corresponding to upper and lower bounds of the desired objective function values under a given significance level, based on an interactive algorithm. Results of the method's application to a hypothetical case indicate that reasonable outputs have been obtained. It demonstrates the practical applicability of the proposed methodology.  相似文献   

12.
In sparsely monitored basins, accurate mapping of the spatial variability of groundwater level requires the interpolation of scattered data. This paper presents a comparison of deterministic interpolation methods, i.e. inverse distance weight (IDW) and minimum curvature (MC), with stochastic methods, i.e. ordinary kriging (OK), universal kriging (UK) and kriging with Delaunay triangulation (DK). The study area is the Mires Basin of Mesara Valley in Crete (Greece). This sparsely sampled basin has limited groundwater resources which are vital for the island’s economy; spatial variations of the groundwater level are important for developing management and monitoring strategies. We evaluate the performance of the interpolation methods with respect to different statistical measures. The Spartan variogram family is applied for the first time to hydrological data and is shown to be optimal with respect to stochastic interpolation of this dataset. The three stochastic methods (OK, DK and UK) perform overall better than the deterministic counterparts (IDW and MC). DK, which is herein for the first time applied to hydrological data, yields the most accurate cross-validation estimate for the lowest value in the dataset. OK and UK lead to smooth isolevel contours, whilst DK and IDW generate more edges. The stochastic methods deliver estimates of prediction uncertainty which becomes highest near the southeastern border of the basin.  相似文献   

13.
To tackle China’s pervasive water pollution, tremendous efforts are needed to achieve more and better information. However, resources for information collection (e.g., water quality monitoring, field experiments, etc.) are very limited for large watersheds with significant nonpoint source pollution. Thus, it is crucial to identify the priority of information acquisition. Based on the theory of value of information (VOI), a stochastic optimization approach was developed in this study to evaluate the importance of information. The approach was applied to several key polluted water bodies in China (e.g., Lake Taihu, Lake Chaohu, and Lake Dianchi). The major findings include: (1) because of the severe pollution and large uncertainty, the VOI for the targeted water bodies is substantial; (2) when the uncertainty is significant, a stricter regulation would result in a higher VOI, and therefore provide more incentives for data collection; (3) due to the interaction among different information sources, collecting multiple types of information simultaneously could be more valuable than collecting one after another; and (4) the importance of a specific type of information could vary significantly across watersheds. The proposed approach can be readily extended to more complex models and more sophisticated watershed cases. It could effectively support watershed management in China, as well as in other countries.  相似文献   

14.
Abstact Ever since the Regional Acidification Information and Simulation Model (RAINS) has been constructed, the treatment of uncertainty has remained an issue of major interest. In a recent review of the model performed for the Clean Air for Europe (CAFE) programme of the European Commission, a more systematic and structured uncertainty analysis has been recommended. This paper aims at contributing to the scientific debate how this can be achieved. Because of its complex structure on the one hand and limited research resources (time, computational capacities) on the other hand a full-blown uncertainty analysis in RAINS is hardly feasible. Therefore, all types of uncertainty require more efficient ways for uncertainty analysis. With respect to parameter uncertainty, we propose to focus research efforts for uncertainty analysis on key parameters. Among different approaches to select key parameters that have been discussed in the literature screening methods seem to be particularly appropriate for complex, deterministic Integrated Assessment models such as RAINS. Surprisingly, in Integrated Assessment modelling for air pollution problems of screening design have not been taken up so far. As a case study we consider the emission module of RAINS. We show that its structure allows for a straightforward and effective screening procedure  相似文献   

15.
Uncertainty is definitely one of the key topics in environmental assessment and management. Typically, attempts to reduce uncertainty are subject to expenses. But how to compare and trade-off expenses and the reduced uncertainty? They only seldom allow the use of a single unit. Instead, the whole analysis and decision procedure is very subjective. This paper presents one approach to handle such problems, namely the combined use of Bayesian influence diagrams, and probabilistic risk attitude analysis. The approach was used in the evaluation of three alternatives for a real time river water quality forecasting system. A trade-off analysis of risk attitudes, costs and uncertainty indicated the levels of socioeconomic utility required for investments in the respective systems, and accordingly illuminated the impact of the uncertainties involved on inference and decision-making with various risk attitudes and discount rates.  相似文献   

16.
Climate change is becoming an ever important issue due to the possibility that it may result in extreme weather events such as floods or droughts. Consequently, precipitation forecasting has similarly gained in significance as it is a useful tool in meeting the increasing need for the efficient management of water resources as well as in preventing disasters before they happen. In the literature, there are various statistical and computational methods used for this purpose, including linear and nonlinear regression, kriging, time series models, neural networks, and multivariate adaptive regression splines (MARS). Among them, MARS stands out as the better performing precipitation modeling method. In this article, we used a recently developed method called robust conic mars (RCMARS), based on MARS (also on CMARS), to forecast precipitation owing to its ability to model complex uncertain data. In CMARS, which was developed as a powerful alternative to MARS, the model complexity is penalized in the form of Tikhonov regularization and studied as a conic quadratic programming. In RCMARS, on the other hand, CMARS is refined further by including the existence of uncertainty in the future scenarios and robustifying it with a robust optimization technique. To evaluate the performance of the RCMARS method, it was applied to build a precipitation model constructed as an early warning system for the continental Central Anatolia Region of Turkey, where drought has been a recurrent phenomenon for the last few decades. Furthermore, the performance of the RCMARS precipitation model was also compared to that of MARS and CMARS. The results indicated that RCMARS builds more accurate, precise, and stable precipitation models compared to those of MARS and CMARS. In addition to these advantageous features of the RCMARS precipitation model, it also provided a good fit to the data. As a result, we propose its use in precipitation forecasting for the region studied.  相似文献   

17.
Environmental models are often too large and cumbersome for effective use in regulatory decision making or in the characterization of uncertainty. This paper describes and compares four response surfaces that could complement a large-scale water quality model, the U.S. National Water Pollution Control Assessment Model (NWPCAM), in simulation and regulatory decision support applications. Results show that a physically based reduced-form model that exploits the mathematical structure of the underlying water quality model is a better predictor of policy-relevant outputs than the polynomial expansions that are frequently used in response surface studies.  相似文献   

18.
In this paper, we explore the impact of several sources of uncertainties on the assessment of energy and climate policies when one uses in a harmonized way stochastic programming in a large-scale bottom-up (BU) model and Monte Carlo simulation in a large-scale top-down (TD) model. The BU model we use is the TIMES Integrated Assessment Model, which is run in a stochastic programming version to provide a hedging emission policy to cope with the uncertainty characterizing climate sensitivity. The TD model we use is the computable general equilibrium model GEMINI-E3. Through Monte Carlo simulations of randomly generated uncertain parameter values, one provides a stochastic micro- and macro-economic analysis. Through statistical analysis of the simulation results, we analyse the impact of the uncertainties on the policy assessment.  相似文献   

19.
In this study, an interval-fuzzy two-stage chance-constrained integer programming (IFTCIP) method is developed for supporting environmental management under uncertainty. The IFTCIP improves upon the existing interval, fuzzy, and two-stage programming approaches by allowing uncertainties expressed as probability distributions, fuzzy sets, and discrete intervals to be directly incorporated within a general mixed integer linear programming framework. It has advantages in uncertainty reflection, policy investigation, risk assessment, and capacity-expansion analysis in comparison to the other optimization methods. Moreover, it can help examine the risk of violating system constraints and the associated consequences. The developed method is applied to the planning for facility expansion and waste-flow allocation within a municipal solid waste management system. Violations of capacity constraints are allowed under a range of significance levels, which reflects tradeoffs between the system cost and the constraint-violation risk. The results indicate that reasonable solutions for both binary and continuous variables have been generated under different risk levels. They are useful for generating desired decision alternatives with minimized system cost and constraint-violation risk under various environmental, economic, and system-reliability conditions. Generally, willingness to take a higher risk of constraint violation will guarantee a lower system cost; a strong desire to acquire a lower risk will run into a higher system cost.  相似文献   

20.
With the increasing global development of wind energy, collision risk models (CRMs) are routinely used to assess the potential impacts of wind turbines on birds. We reviewed and compared the avian collision risk models currently available in the scientific literature, exploring aspects such as the calculation of a collision probability, inclusion of stationary components e.g. the tower, angle of approach and uncertainty. 10 models were cited in the literature and of these, all included a probability of collision of a single bird colliding with a wind turbine during passage through the rotor swept area, and the majority included a measure of the number of birds at risk. 7 out of the 10 models calculated the probability of birds colliding, whilst the remainder used a constant. We identified four approaches to calculate the probability of collision and these were used by others. 6 of the 10 models were deterministic and included the most frequently used models in the UK, with only 4 including variation or uncertainty in some way, the most recent using Bayesian methods. Despite their appeal, CRMs have their limitations and can be ‘data hungry’ as well as assuming much about bird movement and behaviour. As data become available, these assumptions should be tested to ensure that CRMs are functioning to adequately answer the questions posed by the wind energy sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号