首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为了研究高原湖泊底泥沉积物中磷的释放负荷,对贵州红枫湖区10个地区的沉积物进行了磷形态分析。选取10个采样点中5个典型区域,研究结果表明,底泥中各形态磷占总磷比例Org-P为58.6%,NaOH-P为29.91%,Ca-P为11.48%,底泥中主要的磷形态为有机磷。上覆水溶解性总磷酸盐(TSP)与底泥中各形态磷的相关性研究表明,底泥中的Ca-P与上覆水中的TSP几乎没有相关性,NaOH-P与Org-P与上覆水的TSP有较高的相关性(R2>0.94),而底泥中的总磷(TP)与上覆水中的TSP相关性最高(R2>0.98),底泥中这种形态的结构有利于抑制底泥的释放。研究表明,在10点位样品中,间隙水中TP和SRP(溶解性正磷酸)浓度远大于上覆水体中相应磷形态的浓度,间隙水中TP平均浓度为0.37 mg/L,SRP平均浓度为0.18 mg/L,上覆水体中TP平均浓度为0.10 mg/L,SRP平均浓度为0.02 mg/L,间隙水中TP、SRP与上覆水中TP、SRP存在了一种浓度梯度。  相似文献   

2.
长沙市夏季大气颗粒物中重金属的形态及其源解析   总被引:1,自引:0,他引:1  
对长沙市高开区、经开区、开福区以及马坡岭4个采样点夏季的大气颗粒物(TSP)浓度以及颗粒物中的重金属元素Cu、Zn、Mn、Pb和Cd的浓度和形态分布进行了研究分析,利用污染因子(Cf)对重金属元素的可保持能力进行了评价,并利用因子分析方法(PCA)分析TSP中重金属元素的主要来源。结果显示长沙市夏季TSP平均浓度为220.7μg/m3,表明长沙市颗粒物污染较严重。TSP中重金属元素浓度大小顺序为:ZnPbCuMnCd。从形态分布来看,大约63.3%~89.0%的Cu主要存在于可氧化态(F3),而Mn在这一态中分布最少。元素Zn、Cd则主要分布在弱酸提取态,分别占了70%和35%。Pb主要分布在残渣态,大约为24%~43%。由污染因子计算可知Cu、Cd和Zn比Mn、Pb有更高的迁移性。  相似文献   

3.
研究了"引江济太"河段(长江—望虞河—贡湖段)孔隙水、上覆水、悬浮颗粒物及表层沉积物中重金属的含量特征,并采用标准化分析方法推测了"引江济太"调水对太湖重金属含量及分布的影响。结果表明,"引江济太"河段的上覆水和间隙水中的重金属污染较轻,6种重金属(Cd、Pb、Zn、Cu、Cr和As)平均值大多低于《地表水环境质量标准》(GB 3838—2002)Ⅰ类标准,且低于美国优先污染物国家推荐水质基准持续浓度。悬浮颗粒物及表层沉积物中主要的重金属污染元素是Cd,其中Cd平均值分别为2.20、1.78μg/g,为中国水系沉积物平均值的16、13倍,且达到加拿大淡水沉积物保护准则最初影响水平的3倍左右。标准化分析结果表明,"引江济太"调水工程对太湖重金属含量的变化有一定影响,"引江济太"河段沉积物中的重金属可能经过再悬浮过程进入水体,造成水体二次污染。  相似文献   

4.
分析测定了6种元素(Cr、Co、Mn、Cu、Pb、Zn)在北运河水系10个采样点水体和表层沉积物中的含量和形态分布,利用SPSS 19.0统计软件对重金属在不同形态中的含量进行相关性分析。结果显示,北运河下游重金属污染程度高于上游;Cr、Cu、Pb、Zn在底泥可提取态中所占比例相当高,多数采样点都超过10.0%。所研究的重金属多数在底泥Fe-Mn结合态与悬浮物、可交换态、硫化物和有机质结合态均存在相关性;Mn是北运河地化循环中最为活跃的元素。  相似文献   

5.
高速公路路面沉积物的污染特性   总被引:1,自引:0,他引:1  
对湖南省长潭西高速公路不同采样点的路面沉积物进行取样分析,并检测了样品的颗粒级配、COD、重金属(Cu、Zn、Pb和Cd)和有机质。结果表明,路面沉积物主要以粒径<0.15 mm的颗粒为主;较小颗粒物中的COD含量高于较大颗粒中的COD含量;粒径在0.15 mm以下的颗粒物所含重金属Cu、Zn、Pb和Cd的浓度普遍高于所选的土壤标准值,降雨一旦形成径流将会产生严重的污染危害;沉积物中的有机质含量对重金属的吸附有一定的影响,有机质含量越高,沉积物中重金属含量相对也高。  相似文献   

6.
曝气和pH对城市污染河道底泥氮形态的影响   总被引:3,自引:0,他引:3  
许宽  刘波  王国祥  杜旭  凌芬  周锋 《环境工程学报》2012,6(10):3553-3558
以城市重污染河道表层沉积物为研究对象,采用模拟实验方法,探讨了不同曝气方式(水曝气和泥曝气)、上覆水初始pH(自然状态pH=7和pH=11)对城市污染河道底泥氮形态的影响。结果表明:采用水曝气+pH11方式对城市重污染河道上覆水、间隙水中总氮去除率分别为70.03%和44.66%;泥曝气+pH7方式对上覆水、间隙水、底泥中氨氮去除率分别为94.31%、84.07%和68.29%;底泥pH与上覆水总氮浓度呈正相关(p<0.05);泥曝气+pH11方式使底泥含水率、烧失率明显升高,继而影响各形态氮在泥水系统中的赋存,其中底泥吸附态氨氮含量与底泥含水率呈显著负相关(p<0.01),间隙水可溶态氨氮浓度与底泥烧失率显著正相关(p<0.01)。  相似文献   

7.
金矿开采导致严重的水体和沉积物重金属污染。采用电感耦合等离子体质谱仪(ICP/MS)分析了金矿开采区河道32个采样点的水体和表层沉积物样品,研究了水样的溶解态及颗粒态重金属(As、Pb、Cd、Cr、Cu、Zn)组成;通过分步化学提取法研究了各重金属在沉积物中的地球化学形态组成,利用地累积指数法和潜在生态风险指数法评价了河流沉积物中重金属污染状况。结果表明:水体中Cu、Zn、As主要以溶解态存在,Pb、Cr、Cd以颗粒态为主。水体中重金属元素形态分布主要受点源污染排放影响。沉积物中,Cd浓度较低;As、Zn主要以氧化物结合态、有机物结合态和残渣态存在;Pb、Cr、Cu以有机物结合态和残渣态为主。结合地累积指数和潜在生态风险指数分析表明,Cd和Cu为主要的风险元素。  相似文献   

8.
北运河表层沉积物对重金属Cu、Pb、Zn的吸附   总被引:3,自引:0,他引:3  
首先分析了北运河6个采样点表层沉积物中重金属含量及相关基本特征。通过实验室模拟实验,利用分配系数Kd评价沉积物对重金属Cu、Pb、Zn的吸附特性,进一步考察了水体pH变化和有机质对重金属在北运河沉积物上吸附的影响。结果表明,沉积物中重金属的含量顺序为Zn>Cu>Pb,去除有机质后,沉积物对重金属的吸附能力显著降低,但各采样点中的重金属含量,沉积物对重金属吸附能力,以及沉积物中的有机质含量并没有明显相关性,这可能是因为不同采样点中有机质种类与结构不同导致的。总之,北运河沉积物对Pb有很强的吸附能力,其次是Cu和Zn,而且,Cu、Zn、Pb的吸附量随着pH的升高逐渐增大,水体pH值对于Zn的吸附影响更大。  相似文献   

9.
以硫酸亚铁盐为底物,培养以氧化亚铁硫杆菌为主要菌种的土著沥滤微生物,采用批式方法对湘江长沙段底泥进行微生物沥浸实验。实验结果表明,底物投加量与底泥固体浓度比(Sd/Sc)为1.5时已能满足底泥的微生物沥浸要求,进一步研究发现底泥固体浓度为13%、底物投加量为19.5 g/L、沥浸时间为6 d时,底泥中超标重金属Cd、Zn和Cu的去除率可分别达到83.1%、75.3%和61.2%;沥浸后底泥中大部分重金属以残渣态存在,且含量低于农用污泥中污染物控制标准,其中硫化物有机结合态Cu浸出较Zn、Cd需更低的pH,且Cu以间接机理浸出为主;以Fe2+为底物的沥浸体系中,黄铁矾的重吸附或共沉淀是沥浸实验后期重金属浸出率下降的原因之一。  相似文献   

10.
pH值对霞湾港沉积物重金属Zn、Cu释放的影响   总被引:11,自引:1,他引:10  
以霞湾港(铜霞路段)的底泥沉积物为研究对象,采用重金属连续浸提法对重金属Zn、Cu在沉积物中的5种形态进行浸提,分析了其分布特征和在不同pH值与时间的条件下重金属的释放规律。研究结果表明,重金属Zn主要以铁锰氧化物结合态和碳酸盐结合态的形态存在,Cu主要以有机结合态和残渣态的形态存在,可交换离子态的重金属含量都很低。重金属Zn、Cu从沉积物中的释放,主要是在酸性条件下发生,在酸性区内释放量随pH的升高而迅速降低。释放能力和释放速率均为ZnCu,它们释放的过程基本相似,释放速率都比较小,向环境中的释放是个长期过程。  相似文献   

11.
Natural surface coatings samples (NSCSs) from the surface of river shingles were employed to investigate the roles of non-residual and residual components of the NSCSs in controlling Cu and Zn adsorption via the selective extraction techniques and statistical analysis. The results indicate that the greatest contribution to metals adsorption on a molar basis was from Mn oxides in the non-residual fraction. Metals adsorption capacities of Mn oxides exceeded those of Fe oxides by one order of magnitude, fewer roles were found attributing to adsorption by organic materials (OM), and the estimated contribution of the residual fraction to metals adsorption was insignificant. These results implied that Mn oxides were the most important component in controlling heavy metals in aquatic environments. Experiments with Cu and Zn adsorption measured together showed that Cu severely interfered with Zn adsorption to the NSCSs and vice versa under the conditions of the two coexisted ions adsorption.  相似文献   

12.
Yuan C  Weng CH 《Chemosphere》2006,65(1):88-96
An enhanced electrokinetic process for removal of metals (Cr, Cu, Fe, Ni, Pb, Zn) from an industrial wastewater sludge was performed. The electrokinetic experiments were conducted under a constant potential gradient (1.25 V cm(-1)) with processing fluids of tap water (TW), sodium dodecylsulfate (SDS) and citric acid (CA) for 5 days. Results showed that metal removal efficiency of heavy metals for EK-TW, EK-SDS and EK-CA systems are 11.2-60.0%, 37.2-76.5%, and 43.4-78.0%, respectively. A highest metal removal performance was found in EK-CA system. The removal priority of investigated metals from sludge by EK process was found as: Cu > Pb > Ni > Fe > Zn > Cr. The results of sequential extraction analysis revealed that the binding forms of heavy metals with sludge after electrokinetic process were highly depend upon the processing fluid operated. It was found that the binding forms of metals with sludge were changed from the more difficult extraction type (residual and sulfate fractions) to easier extraction types (exchangeable, sorbed, and organic fraction) after treatment by electrokinetic process. Results imply that if a proper treatment technology is followed by this EK process to remove metals more effectively, this treated sludge will be more beneficial for sludge utilization afterwards. Before it was reused, the risk associated with metals of more mobile forms to the environment need to be further investigated. The cost analysis was also evaluated for the investigated electrokinetic systems.  相似文献   

13.
Sewage sludge-amended soils may alter their ability to adsorb heavy metals over time, due to the decomposition of sludge-borne organic matter. Thus, we studied Cd, Ni, and Zn adsorption by a sewage sludge-amended soil (Typic Xerofluvent) before and after one-year incubation in both monometal and competitive systems. In the monometal system, the order of decreasing sorption was Zn>Cd>Ni. Competition significantly reduced metal K(d), especially that of Cd which decreased by nearly 50%. Over the course of the incubation there was a 31% reduction of soil organic matter content. At the same time, in competitive systems Cd K(d) significantly decreased, while Zn K(d) significantly increased, and Ni K(d) remained unaffected. This study shows that sewage sludge-amended soils may change in their ability to sorb heavy metals over time at high metal concentrations. The data suggest that Cd is likely to be of most environmental significance in such soils, since it exhibited decreased sorption under competitive conditions and as the organic matter content of the soil was reduced. The potential for long-term release of metals should be considered in the risk assessment associated with sewage sludge addition to soils, particularly in climates where degradation of organic matter is likely to be enhanced.  相似文献   

14.
Cantwell MG  Burgess RM  King JW 《Chemosphere》2008,73(11):1824-1831
In aquatic systems where metal contaminated sediments are present, the potential exists for metals to be released to the water column when sediment resuspension occurs. The release and partitioning behavior of sediment-bound heavy metals is not well understood during resuspension events. In this study, the release of Cd, Cu, Hg, Ni, Pb and Zn from sediments during resuspension was evaluated using reference sediments with known physical and chemical properties. Sediment treatments with varying quantities of acid volatile sulfide (AVS), total organic carbon (TOC), and different grain size distributions were resuspended under controlled conditions to evaluate their respective effects on dissolved metal concentrations. AVS had the greatest effect on limiting release of dissolved metals, followed by grain size and TOC. Predictions of dissolved concentrations of Cd, Ni, Pb and Zn were developed based on the formulated sediment Σmetal/AVS ratios with Σmetal being the total sediment metal concentration. Predicted values were compared to measured dissolved metal concentrations in contaminated field sediments resuspended under identical operating conditions. Metal concentrations released from the field sediments were low overall, in most cases lower than predicted values, reflecting the importance of other binding phases. Overall, results indicate that for sulfidic sediments, low levels of the study metals are released to the dissolved phase during short-term resuspension.  相似文献   

15.
The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.  相似文献   

16.
采用生物淋滤法处理电子垃圾焚烧迹地重金属严重污染的土壤。所用氧化亚铁硫杆菌是从矿坑废水中通过一系列培养、分离和纯化得到。实验结果表明,生物淋滤法可以有效地去除土壤中重金属Cu、Ph和Zn,去除率的大小顺序为Zn〉Cu〉Pb;采用五步连续提取法分析处理前后土壤中重金属的存在形态,结果表明,通过氧化亚铁硫杆菌处理受重金属污染的土壤,可以促使易移动的重金属结合态的溶解(可交换态、碳酸盐结合态和Fe—Mn氧化物结合态),并使难移动的重金属结合态向易移动的重金属结合态转变。  相似文献   

17.
Mechanisms of lead, copper, and zinc retention by phosphate rock   总被引:31,自引:0,他引:31  
The solid-liquid interface reaction between phosphate rock (PR) and metals (Pb, Cu, and Zn) was studied. Phosphate rock has the highest affinity for Pb, followed by Cu and Zn, with sorption capacities of 138, 114, and 83.2 mmol/kg PR, respectively. In the Pb-Cu-Zn ternary system, competitive metal sorption occurred with sorption capacity reduction of 15.2%, 48.3%, and 75.6% for Pb, Cu, and Zn, respectively compared to the mono-metal systems. A fractional factorial design showed the interfering effect in the order of Pb>Cu>Zn. Desorption of Cu and Zn was sensitive to pH change, increasing with pH decline, whereas Pb desorption was decreased with a strongly acidic TCLP extracting solution (pH = 2.93). The greatest stability of Pb retention by PR can be attributed to the formation of insoluble fluoropyromorphite [Pb(10)(PO(4))(6)F(2)], which was primarily responsible for Pb immobilization (up to 78.3%), with less contribution from the surface adsorption or complexation (21.7%), compared to 74.5% for Cu and 95.7% for Zn. Solution pH reduction during metal retention and flow calorimetry analysis both supported the hypothesis of retention of Pb, Cu, and Zn by surface adsorption or complexation. Flow calorimetry indicated that Pb and Cu adsorption onto PR was exothermic, while Zn sorption was endothermic. Our research demonstrated that PR can effectively remove Pb from solutions, even in the presence of other heavy metals (e.g. Cu, Zn).  相似文献   

18.
Using bio-disturbed sulphide to trace the mobility and transformation of Cu, Pb, Ni and Zn in the sediments of the Spartina alterniflora-dominated salt marsh in the Yangtze River Estuary, measurements were made of the seasonal variations of acid-volatile sulphide (AVS) and of the simultaneously extracted metals (SEM) in the rhizosphere sediments. Microcosm incubation experiments recreating flooding conditions were conducted to evaluate the effect of AVS and other metal binding phases upon the dynamics of Cu, Pb, Ni and Zn in the salt marsh sediments. The results demonstrate that the ratio values of SEM/AVS have a significant seasonal variation in the rhizosphere sediments and that the anoxic conditions in the sediments were likely enhanced by S. alterniflora during the summer and autumn compared with the anoxic conditions resulting from the native species Phragmites australis and Scirpus mariqueter. The incubation experiments suggest that Fe(III) and Mn(IV/III) (hydr)oxides provide important binding sites for heavy metals under oxic conditions, and sulphide provides important binding sites for the Cu and Pb under anoxic conditions. Our observations indicate that the mobility of heavy metals in the salt marsh sediments is strongly influenced by biogeochemical redox processes and that the invasive S. alterniflora may increase the seasonal fluctuation in heavy metal bioavailability in the salt marsh ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号