首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 672 毫秒
1.
盆栽吊兰净化空气中的甲醛研究   总被引:3,自引:2,他引:1  
采用动态箱模拟法研究了甲醛浓度、气体流量、光照强度对盆栽吊兰净化甲醛速率的影响,初步分析了吊兰茎叶和土壤对甲醛的净化贡献.结果表明,白天净化速率为0.24~1.88 mg/h,夜间净化速率为0.06~1.29 mg/h.吊兰对甲醛具有长期的净化作用,且净化速率白天大于晚上.在吊兰耐受范围内,通过提高入口气体甲醛浓度或流...  相似文献   

2.
为了对市售被动式室内空气净化产品的净化效果有深刻具体的认识,选择销售份额较大的4种甲醛清除剂进行实验舱测试。结果表明:(1)甲醛清除剂对甲醛的净化过程均随时间呈对数衰减,可见甲醛浓度越高,甲醛清除剂对甲醛的净化速率越快。(2)不同的甲醛清除剂的净化速率都有一定差异,即使24h净化率均在90%以上的甲醛清除剂,净化速率也不同,净化率达到90%以上所需要的实际时间可相差数倍。(3)《室内空气净化功能涂覆材料净化性能》(JCT 1074—2008)中对甲醛清除剂根据其对污染物24h的净化率进行了分级,消费者可据此对净化产品的优劣有初步判断。而净化速率和饱和净化量则可在消费者购买甲醛清除剂时起到更具体和明确的指导作用,并可在消费者具体使用时,根据饱和净化量,对甲醛清除剂用量和甲醛清除剂持续作用时间有初步的判断。  相似文献   

3.
盆栽植物净化甲苯废气   总被引:1,自引:1,他引:0  
采用动态模拟法模拟盆栽植物对甲苯污染气体的净化,考察吊兰和金绿萝两种盆栽植物在净化甲苯过程中,甲苯入口浓度与植物对甲苯净化速率的关系。结果表明,2种盆栽植物对低浓度甲苯废气具有长期明显的净化效果。在相同条件下,吊兰茎叶和土壤的净化速率优于金绿萝体系。在植物的耐受浓度范围内,2种植物茎叶和土壤的净化速率均随着甲苯入口浓度的升高而增大,且白天的净化速率明显高于黑夜时的净化速率。在实验过程中,吊兰土壤体系的降解率随着甲苯浓度的升高逐渐下降;金绿萝土壤体系的降解率基本不受甲苯入口浓度的影响。吊兰盆栽体系的降解率明显大于金绿萝的降解率。两种植物盆栽体系的降解率随甲苯进口浓度的影响可以忽略。  相似文献   

4.
通过动态法测试水吸收型空气净化器A和活性炭过滤吸附型净化器B对甲醛的去除性能,探索更为合理的方法以评价空气净化器对气态污染物的去除性能.对净化器A去除甲醛的短期测试结果表明,净化器对甲醛浓度为0.3、0.5、0.8和1 mg/m3的连续空气流均有明显的净化效果,对甲醛的去除速率在0.91~2.78 mg/h之间.对净化...  相似文献   

5.
几种观叶植物对室内污染物的净化效果研究   总被引:5,自引:0,他引:5  
为了寻求减少室内空气污染物的措施和技术,我们用吊兰、虎尾兰、君子兰和橡皮树做为试材,开展一系列有针对性的试验.结果表明,这4种室内观叶植物都能吸收室内有毒有害气体,但作用效果差异明显.虎尾兰效果最佳,7 d内室内甲醛总量的减少率比对照多64.6%,二甲苯总量的减少率比对照多61.4%,总挥发性有机物(TVOC)总量的减少率比对照多64.8%;而橡皮树的作用效果最差.  相似文献   

6.
提出了一种用于空调系统的风道式空气净化器,选取甲醛为目标污染物,并在密闭环境舱内对其净化效果进行了研究。实验结果表明:样机内的压降小于60 Pa,对于空调系统来说基本可以忽略不计;环境舱中的甲醛含量经处理后可以降低到规定的标准值以下;在最强光照下,其净化效果为传统平板式反应器的3.5倍;对于3种不同光照强度,甲醛的一次通过效率为4.99%~10.60%,且与光照度呈正相关;甲醛的转化率和反应速率也随光照强度的增大而提高。此外,在3种光照强度下,其对甲醛的净化效能在0.80~0.85之间,属于A级净化器范围。  相似文献   

7.
甲醛是最受关注的室内气态污染物之一。传统甲醛吸附类净化材料存在寿命短、二次污染、废弃物难处理等问题。以钛酸四丁酯为钛源,通过溶胶-凝胶法在氩气气氛下煅烧制备了黑色二氧化钛,采用TEM、XRD、DRS、XPS等技术手段表征了材料的物理、化学、光学特性,并利用连续流表面式光催化反应系统测试黑色TiO2的甲醛净化性能。结果表明,黑色TiO2存在表面无序层和氧空位等特征,并在紫外和可见光区域表现出更高的吸光度和更窄的带隙,紫外光下的甲醛单通净化效率可达78%。通过将活性炭与黑色TiO2复合,可进一步提升材料的甲醛净化效率,并得到在不同流速下活性炭的最佳负载量。黑色TiO2/活性炭与负载高锰酸钠的活性氧化铝经过16 h的长期性能测试对比,前者累计净化量是后者的1.5倍,且并未出现效率的衰减。本研究可为光催化技术在室内甲醛净化领域的应用提供参考。  相似文献   

8.
为了探讨修复微污染河水的潜流湿地中植物对污染物去除效果的影响及其生长变化,在野外条件下构建2座分别栽种菖蒲和空心菜的水平潜流人工湿地,并以未栽种植物的湿地作空白。分析了湿地中污染物的去除效果,考察了湿地中植物的生物量、根系活力和氮磷含量的变化。植物湿地中污染物净化效果优于空白湿地,菖蒲和空心菜湿地对氨氮(NH+4-N)、总氮(TN)、总磷(TP)和高锰酸盐指数(CODMn)的平均去除率分别为61.1%和57.5%,31.5%和39.7%,24.7%和25.5%,20.4%和20.7%。实验结果表明,湿地中菖蒲的根系鲜重是空心菜的4.2倍,但其根系活力低于空心菜。2种植物均可在湿地中正常生长,但受湿地中营养盐浓度的限制性影响,移栽后的植物组织氮磷含量与移栽前相比下降了11.8%~20.3%。植物在净化微污染河水的潜流人工湿地中对N、P的去除起重要作用。  相似文献   

9.
俞慧  李思航  丁洋  王辉  韩金保 《环境污染与防治》2023,(10):1387-1391+1401
为了解基于不同净化原理的室内环境空气甲醛净化方法的净化性能以及协同净化的效果,选取常用的净化原理代表性产品(活性炭、光触媒净化产品、生物酶甲醛清除液)作为研究对象,基于环境舱进行了甲醛净化性能测试。结果表明:(1)活性炭的原料特性影响其甲醛净化能力,净化效果表现为椰壳活性炭>果壳活性炭>竹木活性炭;日常所用光源的不同对光触媒净化产品的甲醛净化效果影响不大;生物酶甲醛清除液的净化效果取决于其稀释比例。(2)3种净化方法中基于物理吸附法的活性炭的甲醛净化性能最优,基于光催化氧化法的光触媒净化产品次之,之后是基于生物酶降解法的生物酶甲醛清除液。(3)净化产品的联用均提高了甲醛去除率,但提高程度有限。活性炭分别与光触媒、生物酶联用时表现出比光触媒与生物酶联用更高的甲醛去除率。研究结果对设计和开发具有高效甲醛净化能力的新型复合材料具有一定参考价值。  相似文献   

10.
利用微型实验舱(0.04 m3)模拟室内甲醛环境进行活性炭吸附实验,研究吸附后甲醛浓度随时间的变化趋势,计算活性炭对甲醛的净化效率、吸附速率和饱和吸附量,探索活性炭对室内甲醛的吸附规律.研究发现,当甲醛含量为0 ~0.40 mg,活性炭用量为0.5g时,舱内甲醛浓度随时间延长呈指数递减变化趋势,吸附后0~0.5 h甲醛浓度递减得最快,0.5~2h递减速度变缓,2~4h甲醛浓度基本上保持不变;研究E0A1、E1A4曲线斜率K及活性炭甲醛净化效率发现,每次吸附过程活性炭吸附2h可达到吸附平衡,活性炭进行3次吸附平衡即可达到吸附饱和,每次实验第一次吸附过程、每次吸附过程前半小时活性炭对甲醛的吸附能力最强;活性炭的吸附速率在吸附初期迅速降低,最后趋近于0;等量椰壳活性炭在一定浓度的污染物环境中饱和吸附量是个定值.说明使用活性炭净化室内甲醛有一定的规律可循.  相似文献   

11.

Indoor air pollutants comprise both polar and non-polar volatile organic compounds (VOCs). Indoor potted plants are well known for their innate ability to improve indoor air quality (IAQ) by detoxification of indoor air pollutants. In this study, a combination of two different plant species comprising a C3 plant (Zamioculcas zamiifolia) and a crassulacean acid metabolism (CAM) plant (Sansevieria trifasciata) was used to remove polar and non-polar VOCs and minimize CO2 emission from the chamber. Z. zamiifolia and S. trifasciata, when combined, were able to remove more than 95% of pollutants within 48 h and could do so for six consecutive pollutant’s exposure cycles. The CO2 concentration was reduced from 410 down to 160 ppm inside the chamber. Our results showed that using plant growth medium rather than soil had a positive effect on decreasing CO2. We also re-affirmed the role of formaldehyde dehydrogenase in the detoxification and metabolism of formaldehyde and that exposure of plants to pollutants enhances the activity of this enzyme in the shoots of both Z. zamiifolia and S. trifasciata. Overall, a mixed plant of Z. zamiifolia and S. trifasciata was more efficient at removing mixed pollutants and reducing CO2 than individual plants.

  相似文献   

12.
The aerosol samples were collected from a high elevation mountain site, Nainital, in India (1958 m asl) during September 2006 to June 2007 and were analyzed for water-soluble inorganic species, total carbon, nitrogen, and their isotopic composition (δ13C and δ15N, respectively). The chemical and isotopic composition of aerosols revealed significant anthropogenic influence over this remote free-troposphere site. The amount of total carbon and nitrogen and their isotopic composition suggest a considerable contribution of biomass burning to the aerosols during winter. On the other hand, fossil fuel combustion sources are found to be dominant during summer. The carbon aerosol in winter is characterized by greater isotope ratios (av. ?24.0?‰), mostly originated from biomass burning of C4 plants. On the contrary, the aerosols in summer showed smaller δ13C values (?26.0?‰), indicating that they are originated from vascular plants (mostly of C3 plants). The secondary ions (i.e., SO4 2?, NH4 +, and NO3 ?) were abundant due to the atmospheric reactions during long-range transport in both seasons. The water-soluble organic and inorganic compositions revealed that they are aged in winter but comparatively fresh in summer. This study validates that the pollutants generated from far distant sources could reach high altitudes over the Himalayan region under favorable meteorological conditions.  相似文献   

13.

Coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. The arid soil resulting from acid mine drainage affects terrestrial and aquatic ecosystems, and thus, site remediation programs must be implemented to mitigate this sequential deleterious processes. A low-cost alternative material to counterbalance the affected physico-chemical-microbiological aspects of the degraded soil is the amendment with low contaminated and stabilized industrial organic sludge. The content of nutrients P and N, together with stabilized organic matter, makes this material an excellent fertilizer and soil conditioner, fostering biota colonization and succession in the degraded site. However, choice of native plant species to restore a degraded site must be guided by some minimal criteria, such as plant survival/adaptation and plant biomass productivity. Thus, in this 3-month study under environmental conditions, phytoproductivity tests with five native plant species (Surinam cherry Eugenia uniflora L., C. myrianthumCitharexylum myrianthum, IngaInga spp., Brazilian peppertree Schinus terebinthifolius, and Sour cherry Prunus cerasus) were performed to assess these criteria, and additional biochemical parameters were measured in plant tissues (i.e., protein content and peroxidase activity) exposed to different soil/sludge mixture proportions. The results show that three native plants were more adequate to restore vegetation on degraded sites: Surinam cherry, C. myrianthum, and Brazilian peppertree. Thus, this study demonstrates that phytoproductivity tests associated with biochemical endpoint measurements can help in the choice of native plant species, as well as aiding in the choice of the most appropriate soil/stabilized sludge proportion in order to optimize biomass production.

  相似文献   

14.
Pesticides applied on sugarcane reach the subsoil of riparian forests and probably contaminate the river water. This work was conducted to learn about the phytoremediation of atrazine and subsoil contamination using the common riparian forest species of Cecropia hololeuca Miq. and Trema micranta (L.) Blum. These plants were grown in soil microcosms where 14C-atrazine at 1/10 of the field-recommended dose was applied at the bottom of the microcosm simulating the movement from contaminated ground water to the upper soil layers and into plants. Residues of 14C-atrazine were detected in all parts of the microcosm including soil, rhizosphere and the roots in different layers of the microcosm, stem and leaves. Atrazine mineralization was higher (10.2%) in the microcosms with plants than the control microcosms without plants (1.2%). The upward movement of this pesticide from deeper to more superficial soil layers occurred in all the microcosms with plants, powered by evapotranspiration process. From the atrazine applied in this study about 45% was taken up by C. hololeuca and 35% by T. micrantha. The highest amount of radioactivity (%) was found in the fine roots and the specific radioactivity (% g?1) showed that thick, fine roots and leaves bioaccumulate atrazine. The enhanced mineralization of atrazine as well the phytostabilization effect of the tree biomass will reduce the bioavailability of these residues and consequently decrease the hazardous effects on the environment.  相似文献   

15.

Background, aim

The aims of the NORMACAT project are: to develop tools and unbiased standardized methods to measure the performance and to validate the safety of new materials and systems integrating photocatalysis, to develop new photocatalytic media with higher efficiency and to give recommendations aimed at improving the tested materials and systems.

Method

To achieve this objective, it was necessary to design standardized test benches and protocols to assess photocatalytic efficiency of materials or systems used in the treatment of volatile organic compounds (VOCs) and odour under conditions close to applications. The tests are based on the validation of robust analytical methods at the parts per billion by volume level that not only follow the disappearance of the initial VOCs but also identify the secondary species and calculate the mineralization rates.

Results

The first results of inter-laboratory closed chamber tests, according to XP B44-013 AFNOR standard, are described. The photocatalytic degradation of mixtures of several defined pollutants under controlled conditions (temperature, relative humidity, initial concentration) was carried out in two independent laboratories with the same photocatalytic device and with various analytical procedures. Comparison of the degradation rate and of the mineralization efficiency allowed the determination of the clean air delivery rate in both cases. Formaldehyde was the only by-product detected during photocatalytic test under standardized experimental conditions. The concentration of transient formaldehyde varied according to the initial VOC concentration. Moreover the photocatalytic reaction rate of formaldehyde in mixture with other pollutants was analysed. It was concluded that formaldehyde concentration did not increase with time.

Conclusion??perspective

This type of experiment should allow the comparison of the performances of different photoreactors and of photocatalytic media under controlled and reproducible conditions against mixtures of pollutants including formaldehyde.  相似文献   

16.
Oxidation of formaldehyde over supported platinum catalyst produced CO2 as a major product and CO as a minor product under a wide range of Inlet concentrations and reaction temperatures. The temporal variation of CO yield proceeded through a maximum suggesting that it was produced as an intermediate in the pathway leading to CO2. CO selectivity (S co = y co/x HCHO) was maximized by operating at oxygen concentration below the stoichiometric point and at high reaction temperatures. A mechanism for formaldehyde oxidation is proposed which involves adsorption of formaldehyde followed by catalytic decomposition to CO and H2 and oxidation of the surface species; the rate limiting step apparently shifts from the decomposition at high oxygen concentration to the oxidation of surface species at low concentration. The rate expression was obtained from the postulated mechanism and found to be consistent with the experimental results. The maximum for the yield of CO provided a second method by which to confirm the postulated rate expression.  相似文献   

17.

The rise in global temperature is one of the main threats of extinction to many vulnerable species by the twenty-first century. The negative impacts of climate change on the northern highlands of Pakistan (NHP) could change the species composition. Range shifts and range reduction in the forested landscapes will dramatically affect the distribution of forest-dwelling species, including the Galliformes (ground birds). Three Galliformes (e.g., Lophophorus impejanus, Pucrasia macrolopha, and Tragopan melanocephalus) are indicator species of the environment and currently distributed in NHP. For this study, we used Maximum Entropy Model (MaxEnt) to simulate the current (average for 1960–1990) and future (in 2050 and 2070) distributions of the species using three General Circulation Models (GCMs) and two climate change scenarios, i.e., RCP4.5 (moderate carbon emission scenario) and RCP8.5 (peak carbon emission scenario). Our results indicated that (i) under all three climate scenarios, species distribution was predicted to both reduce and shift towards higher altitudes. (ii) Across the provinces in the NHP, the species were predicted to average lose around one-third (35%) in 2050 and one-half (47%) by 2070 of the current suitable habitat. (iii) The maximum area of climate refugia was projected between the altitudinal range of 2000 to 4000 m and predicted to shift towards higher altitudes primarily?>?3000 m in the future. Our results help inform management plans and conservation strategies for mitigating the impacts of climate change on three indicator Galliforms species in the NHP.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号