首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Management of municipal solid waste incineration residues   总被引:12,自引:0,他引:12  
The management of residues from thermal waste treatment is an integral part of waste management systems. The primary goal of managing incineration residues is to prevent any impact on our health or environment caused by unacceptable particulate, gaseous and/or solute emissions. This paper provides insight into the most important measures for putting this requirement into practice. It also offers an overview of the factors and processes affecting these mitigating measures as well as the short- and long-term behavior of residues from thermal waste treatment under different scenarios. General conditions affecting the emission rate of salts and metals are shown as well as factors relevant to mitigating measures or sources of gaseous emissions.  相似文献   

2.
Fresh municipal solid waste incineration residues (MSWIR) and a drilling core of 2-10 years old landfilled MSWIR were investigated to determine the alterations due to weathering in a landfill. Physical and geochemical properties and transformations of major components and heavy metals were analyzed for fresh and landfilled residues. Carbonates and hydroxides (10-12vol%) as major mineralogical compositions in the 8-10 years weathered MSWIR were observed by modal analysis of thin sections. Three step sequential extractions indicated that reducible phases, mainly the Fe, Al and Mn hydroxides increased with depth in the landfill. A pH controlled leaching test (including availability test and pH dependent leaching test) was then conducted. Results indicated lower concentrations of leachable contents at pH values from 6 to 10 for the four elements (Pb, Zn, Al and Fe) in the 8-10 years landfilled residues than in the fresh and 1-2 years landfilled residues. This means that 8-10 years weathered MSWIR became more stable than fresh landfilled residues. The reasons for the stabilization of these elements might be the hydration of Al and Fe during weathering in the landfill, which then results in the heavy metals adsorptions of these minerals.  相似文献   

3.
4.

Incineration is one of the key technologies in disposal of municipal waste, which produces municipal solid waste incineration (MSWI) residues with high valuable metal contents. The recycling strategy for the MSWI residues is typically focused on the recovery of scrap metals yielding processed municipal solid waste incineration residues (PIR) as the main byproduct. However, the PIR still contains valuable metals, particularly gold, which cannot be extracted by conventional methods. Here, we evaluated the feasibility of using the 0.5–2.0 mm grain size fraction of PIR containing 28.82 ± 1.62 mg/kg of gold as raw material for a two-stage extraction process. In the first stage the alkalic fine-grained PIR was acidified with a solution of 20% (v/v) of HCl-containing flue gas cleaning liquid that is obtained by the municipal waste incineration plant itself as a waste product. In the second stage we leached the acidified fine-grained PIR by thiourea with Fe3+ as an oxidant. Application of the thiourea-Fe3+ leaching system resulted in recovery of 16.4 ± 1.56 mg/kg of gold from the fine-grained PIR within 6 h of incubation. Due to high gold market prices, upscaling of the suggested technology can represent a suitable strategy for gold recovery from PIR and other MSWI residues.

  相似文献   

5.

Chemical Looping Combustion (CLC) has been found to be a better alternative in converting Municipal Solid Waste (MSW) to energy and has the potential to reduce the generation of dioxins due to the inhibition of the de-novo synthesis of dioxins. This study comprehensively reviews the experimental studies of CLC of MSW, the oxygen carriers, reactor types, performance evaluation, and ash interaction studies. Modeling and simulation studies of CLC of MSW were also critically presented. Plastic waste is MSW’s most studied non-biomass component in MSW under CLC conditions. This is because CLC has been shown to reduce the emission of dioxins and furans, which are normally emitted during the conventional combustion of plastics. From the several oxygen carriers tested with MSW’s CLC, alkaline earth metals (AEM) modified iron ore was the most effective for reducing dioxin emissions, improving combustion efficiency and carbon conversion. Also, oxygen carriers with supports were more reactive than single carriers and CaSO4/Fe2O3 and CaSO4 in silica sol had the highest oxygen transport ability. Though XRD analysis and thermodynamic calculations of the reacted oxygen carriers yielded diverse results due to software computation constraints, modified iron ore produced less HCl and heavy metal chlorides compared to iron ore and ilmenite. However, alkali silicates, a significant cause of fouling, were observed instead. The best reactor configuration for the CLC of MSW is the fluidized bed reactor, because it is easy to obtain high and homogeneous solid–gas mass transfer. Future research should focus on the development of improved oxygen carriers that can sustain reactivity after several cycles, as well as the system’s techno-economic feasibility.

  相似文献   

6.
To achieve both high-efficiency power generation and high detoxification performance, advanced-type waste power generation plants such as pyrolysis and gas reforming plants are suggested. Further surveys on actual operational data of these plants are required in terms of reliability of the system when it is introduced to waste disposal sites. To verify the technical effectiveness of advanced-type waste power generation using the pyrolysis and gas reforming method, we evaluated 10?tons/day of municipal solid wastes (MSW) treated in a demonstration plant. A demonstration test was conducted over 100?days including 35?consecutive days of operation treating MSWs. The test results show high recycling performance and harmless nature of the plant which proves it to be an excellent waste recycling system. Major test results are as follows: (1) stabilization of waste treatment is possible with the wastes of various qualities, (2) clean gas is produced from the waste whose energy recovery ratio is approximately 40?%. (3) 99.3?% weight % of dried waste are recovered as valuable materials such as clean gas, char and metal, (4) total amount of dioxin emission to the outside of the plant is very small, down to 0.0051–0.018?μg?TEQ per ton waste.  相似文献   

7.
This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment.The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range.In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage.  相似文献   

8.
Waste management is in need of a reliable and economical treatment method for metals in fly ashes from municipal solid waste incineration (MSWI). However, no state-of-the-art technique has gained wide acceptance yet. This paper is a synthesis of five elsewhere published investigations covering a project which aimed to assess the possibilities and limitations of adding carbon dioxide (CO2) to fly ash as a stabilization method. Carbonation factors that were studied are the partial pressure of carbon dioxide (CO2), the addition of water, the temperature, and the reaction time. Laboratory experiments were performed applying methods such as factorial experimental design, thermal analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and leaching assays including pHstat titration and sequential extraction. Leaching data were verified and complemented using chemical equilibrium calculations. Data evaluation was performed by means of multivariate statistics such as multiple linear regression, principal component analysis (PCA), and partial least squares (PLS) modeling. It was found that carbonation is a good prospect for a stabilization technique especially with respect to the major pollutants lead (Pb) and zinc (Zn). Their mobility decreased with increasing factor levels. Dominating factors were the partial pressure of CO2 and the reaction time, while temperature and the addition of water were of minor influence. However, the treatment caused a mobilization of cadmium (Cd), requiring further research on possible countermeasures such as metal demobilization through enhanced silicate formation.  相似文献   

9.
与填埋、堆肥处理相比,生活垃圾焚烧处理在减量化和资源化方面有着巨大的优势,在未来将成为大城市生活垃圾的主要处理方式。采用生命周期评价方法,对不同余热利用和尾气处理方式下的生活垃圾焚烧处理方案对环境的影响进行评价。结果表明,在尾气处理系统中,干法、湿法、半干法3种酸性气体处理方式中,湿法处理的环境影响潜值最小,但是其资源耗竭系数最大。添加SNCR脱氮系统可以在酸性气体净化基础上将环境影响潜值降低70%左右,而资源耗竭系数变化不大。在单纯供热、供电和热电联供3种余热利用方式中,单纯供电的热利用效率最低,直接供热的热利用效率最高。  相似文献   

10.
In this study, metal behavior in ash-melting and municipal solid waste (MSW) gasification-melting facilities were investigated. Eight ash-melting and three MSW gasification-melting facilities with a variety of melting processes and feedstocks were selected. From each facility, melting furnace fly ash (MFA) and molten slag were sampled, and feedstock of the ash-melting processes was also taken. For the ash melting process, the generation rate of MFA was well correlated with the ratio of incineration fly ash (IFA) in feedstock, and this was because MFA was formed mostly by mass transfer from IFA and a limited amount from bottom ash (BA). Distribution ratios of metal elements to MFA were generally determined by volatility of the metal element, but chlorine content in feedstock had a significant effect on Cu and a marginal effect on Pb. Distribution ratio of Zn to MFA was influenced by the oxidizing atmosphere in the furnace. High MFA generation and distribution ratio of non-volatile metals to MFA in gasification-melting facilities was probably caused by carry-over of fine particles to the air pollution control system due to large gas volume. Finally, dilution effect was shown to have a significant effect on metal concentration in MFA.  相似文献   

11.
Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS2) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O2 concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg?1 (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H2S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.  相似文献   

12.
This communication reports the laboratory scale study on the production of cement clinkers from two types of municipal solid waste incineration fly ash (MSW ash) samples. XRD technique was used to monitor the phase formation during the burning of the raw mixes. The amount of trace elements volatilized during clinkerization and hydration, as well as leaching behaviours of the clinkers obtained from optimum compositions, were also evaluated. From the results it is observed that all of the major components of ordinary Portland cement (OPC) clinkers are present in the produced clinkers. Results also show the volatilization of considerable amounts of Na, K, Pb, Zn and Cd during the production of clinkers. However, major parts of the toxic elements remaining in the clinkers appear to be immobilized in the clinkers phases. Hydration studies of the clinkers obtained from optimum compositions show that the clinkers prepared from raw MSW ash are more reactive than the washed MSW ash based clinkers. TG/DTA analyses of the hydrated pastes show the formation of hydration products, which are generally found in OPC and OPC derived cements. The initial study, therefore, shows that more than 44% of MSW ash with the addition of very small amounts of silica and iron oxide can be used to produce cement clinkers. The amount of CaCO3 necessary to produce clinkers (approximately 50%) is also smaller than the same required for the conventional process (more than 70%).  相似文献   

13.
Accelerated carbonation of municipal solid waste incineration fly ashes   总被引:3,自引:0,他引:3  
As a result of the EU Landfill Directive, the disposal of municipal solid waste incineration (MSWI) fly ash is restricted to only a few landfill sites in the UK. Alternative options for the management of fly ash, such as sintering, vitrification or stabilization/solidification, are either costly or not fully developed. In this paper an accelerated carbonation step is investigated for use with fly ash. The carbonation reaction involving fly ash was found to be optimum at a water/solid ratio of 0.3 under ambient temperature conditions. The study of ash mineralogy showed the disappearance of lime/portlandite/calcium chloride hydroxide and the formation of calcite as carbonation proceeded. The leaching properties of carbonated ash were examined. Release of soluble salts, such as SO4, Cl, was reduced after carbonation, but is still higher than the landfill acceptance limits for hazardous waste. It was also found that carbonation had a significant influence on lead leachability. The lead release from carbonated ash, with the exception of one of the fly ashes studied, was reduced by 2-3 orders of magnitude.  相似文献   

14.
The potential of phosphorus (P) recycling from municipal solid waste incineration (MSWI) residue is investigated. Vast and ever increasing amounts of incineration residues are produced worldwide; these are an environmental burden, but also a resource, as they are a major sink for the material flows of society. Due to strict environmental regulations, in combination with decreasing landfilling space, the disposal of the MSWI residues is problematic. At the same time, resource scarcity is recognized as a global challenge for the modern world, and even more so for future generations.This paper reports on the methods and efficiency of P extraction from MSWI fly ash by acid and base leaching and precipitation procedures. Phosphorus extracted from the MSWI residues generated each year could meet 30% of the annual demand for mineral phosphorus fertiliser in Sweden, given a recovery rate of 70% achieved in this initial test.The phosphorus content of the obtained product is slightly higher than in sewage sludge, but due to the trace metal content it is not acceptable for application to agricultural land in Sweden, whereas application in the rest of the EU would be possible. However, it would be preferable to use the product as a raw material to replace rock phosphate in fertilizer production. Further development is currently underway in relation to procedure optimization, purification of the phosphorus product, and the simultaneous recovery of other resources.  相似文献   

15.
For investigation of the behavior of municipal solid waste incineration bottom ash in landfill, we have analysed bottom ash samples taken after the quench tank as well as after five months of storage in the laboratory for elements and organic constituents. Water extractable organic carbon, particulate organic carbon, amino acids, hexosamines and carbohydrates considerably decreased during the five months of storage and their spectra revealed microbial reworking. This shows that the organic matter present in the bottom ash after incineration can provide a substrate for microbial activity. The resulting changes of the physico-chemical environment may effect the short-term behavior of the bottom ash in landfill.  相似文献   

16.
Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city’s urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007).The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita?1 day?1. Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).  相似文献   

17.
The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.  相似文献   

18.
Multiple-scale dynamic leaching of a municipal solid waste incineration ash   总被引:1,自引:1,他引:0  
Predicting the impact on the subsurface and groundwater of a pollutant source, such as municipal solid waste (MSW) incineration ash, requires a knowledge of the so-called "source term". The source term describes the manner in which concentrations in dissolved elements in water percolating through waste evolve over time, for a given percolation scenario (infiltration rate, waste source dimensions, etc.). If the source term is known, it can be coupled with a model that simulates the fate and transport of dissolved constituents in the environment of the waste (in particular in groundwater), in order to calculate potential exposures or impacts. The standardized laboratory upward-flow percolation test is generally considered a relevant test for helping to define the source term for granular waste. The LIMULE project (Multiple-Scale Leaching) examined to what extent this test, performed in very specific conditions, could help predict the behaviour of waste at other scales and for other conditions of percolation. Three distinct scales of percolation were tested: a laboratory upward-flow percolation column (30cm), lysimeter cells (1-2m) and a large column (5m) instrumented at different depths. Comparison of concentration data collected from the different experiments suggests that for some non-reactive constituents (Cl, Na, K, etc.), the liquid versus solid ratio (L/S) provides a reasonable means of extrapolating from one scale to another; if concentration data are plotted versus this ratio, the curves coincide quite well. On the other hand, for reactive elements such as chromium and aluminium, which are linked by redox reactions, the L/S ratio does not provide a means of extrapolation, due in particular to kinetic control on reactions. Hence extrapolation with the help of coupled chemistry-transport modelling is proposed.  相似文献   

19.
Beneficial utilization of residues from municipal solid waste incineration is an important objective for integrated waste management in many jurisdictions. When residues are to be used as an aggregate substitute in construction applications, the release of constituents of concern to soils and water through leaching is an important environmental consideration. In this paper, residue characteristics that control constituent leaching and testing approaches for evaluating leaching are discussed. Quality control and potential improvement in case of beneficial application are addressed.  相似文献   

20.
Unit-charging programs for municipal solid waste in Japan   总被引:1,自引:0,他引:1  
Unit-charging programs known as pay-as-you-throw (PAYT) for municipal solid waste in Japan were surveyed. The number of municipalities that have implemented PAYT for combustible waste totaled 954 (30%) in 2003. The introduction of PAYT programs peaked in the early 1970s and again in the 1990s. PAYT has tended to be adopted by municipalities with small populations (less than 30,000). PAYT charging systems can be roughly divided into two groups: simple unit-pricing programs and two-tiered pricing programs. It is difficult to see the relationship between PAYT and waste reduction by simple inspection of the overall changes throughout Japan. Case studies of four municipalities showed that the implementation of PAYT programs reduced the amount of residual waste generated by 20% to 30%. In combination with other measures, especially the recycling of containers and packaging, PAYT programs can bring about a dramatic reduction in waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号