首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用TMBR+NF/RO组合工艺对湖北省宜昌市某垃圾卫生填埋场渗滤液进行处理,介绍了组合工艺的流程、特点、设备规格、技术参数。TMBR系统对可生化降解COD处理后,COD平均质量浓度为822 mg/L,平均去除率为95.8%,对NH_3-N平均去除率为94.9%;经过NF/RO出水的COD平均值为45 mg/L,NH_3-N均小于25mg/L,达到《生活垃圾填埋场污染控制标准》(GB 16889—2008)的排放标准。组合工艺处理成本为29.5元/m3。  相似文献   

2.
利用芬顿和光-芬顿工艺降解垃圾渗滤液纳滤浓缩液中的难降解有机物。起始pH值5.0及较低H_2O_2/Fe~(2+)投加量时,芬顿法的氧化-絮凝作用可以去除70%以上的COD。采用芬顿氧化-絮凝和光-芬顿组合工艺处理不同浓度纳滤浓缩液时,H_2O_2/Fe~(2+)投加量为35 m M/8 m M和90 m M/10 m M时均可实现90%的COD和TOC去除率;组合工艺出水COD为112~160 mg/L,BOD/COD为0.35~0.43。纳滤浓缩液中检出的13种多环芳烃经过组合工艺处理后的总去除率均约在90%。  相似文献   

3.
以长期运行的闭合式循环水养殖系统(Recirculating Aquaculture System,RAS)中的养殖废水为处理对象,采用序批式厌氧/缺氧/好氧(SBR-A~2/O)工艺研究不同碳磷比(COD/ρ(P))对养殖废水脱氮除磷的影响。结果表明:对于TN在50~70 mg/L的RAS废水,当COD/ρ(P)19.85时,TN和TP去除率较低,随COD/ρ(P)升高,去除率逐渐增加;在COD/ρ(P)≥19.85时,TN和TP去除稳定,平均去除率分别为62.38%±8.33%和62.44%±4.97%。维持COD/ρ(P)在25~30进行试验,RAS废水中各污染物去除稳定,水体中TN、TP、NO-3-N、PO3-4-P、NH_4~+-N和NO-2-N的平均去除率分别为60.61%、62.69%、60.21%、60.46%、45.55%和84.94%。进水为高质量浓度NH_4~+-N((16.07±1.09)mg/L)废水的条件下,COD/ρ(P)22.49时,出水NO-2-N远高于进水,积累明显;COD/ρ(P)≥22.49时,NO-2-N去除率可达100%;NH_4~+-N的平均去除率为87.29%。  相似文献   

4.
用CWAO技术处理COD为2 000 mg/L的亚甲蓝水溶液.以Cu(NO3)2为催化剂,考察了催化剂投加量、反应温度、压力及进水pH值对亚甲蓝水样COD去除率、脱色率、出水pH值的影响.实验表明,亚甲蓝的氧化效率随催化剂投加量的增加,反应温度及压力的升高而升高.然而,综合考虑亚甲蓝的氧化效率、试剂费用、设备成本及能量消耗,实验确定Cu(NO3)2的投加量以Cu2 计为150 mg/L,反应温度及压力分别为200℃和2.0 MPa.在酸性进水条件下,COD去除率随进水pH值的降低而升高;而在碱性进水条件下,COD去除率随进水pH值的升高而升高.pH值按COD去除率由高到低的排列顺序是:3.87、11.23、5.50、7.25、9.47,实验确定最佳进水pH值是3.87.在以上最佳的操作条件下,反应150 min,水样COD去除率达97.4%,脱色率达99.97%,出水pH值3.63.  相似文献   

5.
采用UV/Fenton联合氧化法处理糖精钠工业废水,首先单因素实验研究了H_2O_2浓度、FeSO_4浓度、初始pH值和反应时间对糖精钠废水处理效果的影响,并利用响应面优化实验得到了最优条件:反应时间110 min,pH值为6,FeSO_4用量为5 g/L,H_2O_2用量为78 mL/L。响应面实验的结果表明,影响因子的显著性为H_2O_2用量FeSO_4用量反应时间初始pH值;FeSO_4用量和H_2O_2用量的交互作用显著;数学模型回归性较好。以最优条件处理后的糖精钠废水COD去除率为89.8%,BOD去除率为72.7%,TOC去除率为79.2%,同时,色度、悬浮物和氨氮去除率分别达到98.4%,90.9%,98.6%,BOD/COD比值由0.24提高到0.64,糖精钠废水可生化性得到了很大提高,为后续进入工业园区污水处理厂生化处理奠定了基础。  相似文献   

6.
将复合微生物制剂(HBH-Ⅱ)与生物膜法相结合,以重庆市某垃圾填埋场的渗滤液为研究对象,探讨了HBH-Ⅱ制剂在3种不同条件下对渗滤液的处理效果.结果表明,HBH-Ⅱ对垃圾渗滤液COD和NH3-N的去除有明显影响.反应72 h、低流量间歇曝气36 h、接种量1/10 000(HBH-Ⅱ与水的体积比)、进水pH=8.5条件下,处理效果最佳.HBH-Ⅱ中的复合微生物具有生物增强剂的作用,能明显促进污染物的降解.采用HBH-Ⅱ制剂时克服了以往处理工艺中气味恶臭的弊端,还具有产泥量小、色度去除效果好等优点.与单独使用HBH-Ⅱ处理渗滤液相比,以陶粒为填料的HBH-Ⅱ生物膜系统能够为HBH-Ⅱ的生长繁殖提供良好环境.挂膜成功运行5 d后,COD和NH3-N的去除率分别达到70.58%和72.99%.  相似文献   

7.
以北方村镇生活污水为研究对象,采用多级垂直流人工湿地进行试验研究,在稳定运行条件下,采用水力停留时间1.5d对系统运行一年,考察了COD、NH_3-N、TN、TP的去除效果。结果表明,湿地系统对COD的去除率大约在87.3%~96.1%范围内,出水COD的浓度保持在7.36~22.96mg/L范围之内,另外,相对于夏季而言,冬季湿地的各格室对COD的平均去除率偏低;出水NH_3-N的浓度均值保持在5.87~24.16mg/L之间,其TN浓度均值保持在4.13~23.13mg/L之间,多级垂直流人工湿地系统在硝化方面效果突出,全面改善了湿地的脱氮水平;系统对TP的平均去除率在87.4%~94.3%之间。  相似文献   

8.
采用UV/Fenton氧化法对某树脂厂甲醛废水进行预处理,通过单因素试验和正交试验探讨了H2O2和Fe2+投加量、反应时间及pH值等因素对废水COD和HCHO去除率的影响。综合考虑经济性和去除效果,确定了最佳反应条件:H2O2投量为10 g/L,Fe2+投量为1.2 g/L,反应时间50 min,原水pH值8.23。在此条件下,COD和HCHO的去除率可分别达到48.18%和99.74%,反应符合一级反应动力学。废水可生化性(BOD5/COD)从初始的0.25提高到0.43,为废水的后续生化处理创造了条件。  相似文献   

9.
采用臭氧氧化法深度处理经生化工艺处理的养猪废水,探讨反应时间、臭氧投加速率和p H值对COD、色度和UV254去除效果的影响,并采用紫外可见光谱和三维荧光光谱(3DEEM)分析了臭氧氧化前后养猪废水中溶解性有机物(DOM)的变化特征。结果表明,当臭氧投加速率为1.13g/h、反应温度为20℃、p H值为7.2时,反应40 min后养猪废水的COD、色度和UV254去除率分别约为50%、95%和75%。生化处理后的养猪废水主要含有可见腐殖质、紫外腐殖质和微生物代谢产物,臭氧氧化后微生物代谢产物的荧光峰基本消失,可见腐殖质和紫外腐殖质特征荧光峰荧光强度与原水相比也显著降低。研究表明,臭氧对养猪废水中难降解有机物的降解作用非常明显。  相似文献   

10.
探讨以三氯异氰脲酸作氧化剂的化学氧化法深度处理中低浓度垃圾渗滤液的效果和实际应用的可行性。实验结果表明,该法设备简单、处理效率高、效果好;最佳处理工艺条件是:三氯异氰脲酸投加量10.0 g/L、反应时间30 min、反应温度20℃、初始pH=7.0、搅拌速率100 r/min。此时,NH_3-N和COD的去除率为95.87%和86.41%,剩余NH_3-N和COD含量分别为21.1 mg/L和55.2 mg/L,均达到国家规定的垃圾渗滤液排放标准。氧化反应完成后,采用曝气法脱除渗滤液中的余氯,成本低,实际应用可行。三氯异氰脲酸的工程应用成本约为66.5元/t。  相似文献   

11.
针对晚期垃圾渗滤液成分复杂,生化性极差,氨氮浓度高的特点,采用HTO(BAC)-MBR-NF工艺处理,工程处理规模150 m~3/d,COD质量浓度为1 500~2 000 mg/L,NH_3-N质量浓度为400~600 mg/L,处理后废水COD、NH_3-N质量浓度分别降至70 mg/L、5 mg/L,达到相关排放标准。  相似文献   

12.
采用A/O生物接触氧化法处理生活污水,考查了系统的挂膜启动以及水力停留时间(HRT)、进水pH值和进水COD浓度对系统去除有机物及脱氮效果的影响。结果表明:15 d左右挂膜成功;HRT=13 h,COD去除率和氨氮去除率可分别达到96.72%、85.43%;系统具有较好的抗冲击负荷能力,COD去除率最低在70%左右,氨氮去除率均大于65%,最佳的进水COD质量浓度应控制在300~500mg/L;pH值变化对氨氮去除率的影响更加明显,pH值在7~8时,COD去除率大于90%,氨氮去除率达68%~80%。  相似文献   

13.
混凝沉淀-微电解-催化氧化法处理促进剂M生产废水   总被引:1,自引:0,他引:1  
采用"混凝沉淀-微电解-催化氧化"法对橡胶促进剂M的生产废水进行处理.当原水COD约为5 g/L时, COD去除率可达96%以上,并得到最佳操作条件为:混凝工段PAM的投加量为1%,混凝时间为0.5 h;微电解工段铁炭质量比m(Fe):m(C)=30:1,pH值2-3,微电解时间3 h;催化氧化工段H2O2(30%)投加量为2%,反应时间为2 h.废水中绝大多数的苯胺、促进剂M等有机污染物和毒性较高的还原性硫化物均实现了高效去除,废水中TOC(总有机碳)、COD浓度显著下降.  相似文献   

14.
采用好氧与电絮凝联合工艺处理糖蜜酒精厌氧出水,考察COD和色度的去除效果.首先,采用SBR工艺去除废水中的易降解污染物.结果表明:采用SBR法处理稀释10倍的糖蜜酒精厌氧出水,适宜的水力停留时间为10 h;COD去除率为42%,脱色效果不明显,BOD5/COD由0.54下降到0.09,好氧出水难以生化降解.进一步采用电絮凝法处理好氧出水,并考察了极板间距、初始pH值、电流密度和电解时间等因素对COD去除及脱色效果的影响.结果表明,在极板间距为3 cm、废水pH=7.83(无须调节,最佳pH=6~8)、电流密度为10 mA/cm2、电解时间为30 min的条件下进行电絮凝处理,与稀释10倍的糖蜜酒精厌氧出水相比,COD总去除率可达86%,脱色率达95%.  相似文献   

15.
对垃圾渗滤液膜滤浓缩液采用铁碳微电解法进行预处理,探讨了p H值、反应时间及气液比对COD去除效率的影响。结果表明,当p H值为3、反应时间120 min、气液比10∶1时,COD、TN的去除率分别为79.6%,56.4%;NH3-N由进水的70.9 mg/L上升为77.0 mg/L;预处理效果较好。但是由于铁碳微电解对盐度没有去除效果,影响后续反应进行。如何经济有效地降低含盐量成为今后研究重点。  相似文献   

16.
以小麦秸秆、凹凸棒石、针铁矿为原料,以酚醛树脂为黏结剂,通过复合、热压、烧结等工艺过程制备出不同成分的木质陶瓷,并利用该系列木质陶瓷对城市二级出水中的有机物及氮磷进行吸附实验研究。结果表明,900℃下的木质陶瓷[m(麦秸)∶m(凹凸棒石)∶m(针铁矿)=1∶1∶1]COD及NH_3-N的吸附效果最佳,2 h可达吸附平衡,投加量为8 g/L时COD去除率达66.48%,投加量为6 g/L时氨氮去除率为69.72%,且酸性条件不利于COD的吸附,NH_3-N的最佳吸附p H范围是2~11。800℃下的木质陶瓷[(麦秸)∶m(凹凸棒石)∶m(针铁矿)=1∶2∶0]P的吸附效果最佳,15 min可达吸附平衡,投加量为6 g/L时总P去除率可达99.69%,p H值、转速、温度对吸附磷影响不大。  相似文献   

17.
针对现有人工湿地硝化效能低、占地面积大的问题,研究污水处理厂尾水人工湿地高效硝化深度处理技术,采用序批式深床人工湿地反应器(DSCW),考察进水方式及其运行工况对硝化效能的影响。结果表明,进水方式、进水时间和闲置时间对湿地硝化效能影响显著。进水方式采用"连续进水-间歇出水"较连续进出水运行工况NH_4~+-N去除率高39.69%。连续进水时间为5.5 h、7.5 h、11.5 h时,NH_4~+-N去除率分别为81.82%、88.12%、89.91%;闲置时间为0、2 h、4 h时,NH_4~+-N去除率分别为88.12%、94.46%、92.60%。反应器在水温(20±3)℃、负荷35.56 g NH_4~+-N/(m2·d)、连续进水7.5 h-间歇出水0.5 h-排空闲置2 h运行工况下,出水NH_4~+-N为0.91 mg/L,去除率为94.46%,系统NH_4~+-N去除效能大幅提高。  相似文献   

18.
采用高温等离子体炬对含甲苯废气进行了处理研究,实验结果表明:甲苯平均去除率随着其初始质量浓度以及气体流量的增加都基本呈现下降趋势。在气体流量为2.2 m~3/h,处理电流在23 A时,甲苯的去除效果最好。这种条件下,初始质量浓度为0~400,400~800,800~1 200,1 200~1 600 mg/m~3甲苯的去除率可以分别达到98.29%,96.52%,94.06%,93.05%。  相似文献   

19.
化学沉淀/Fenton法处理垃圾渗滤液的研究   总被引:1,自引:0,他引:1  
先采用氧化镁和磷酸在碱性条件下与渗滤液中的NH3-N发生化学反应,生成六水磷酸铵镁(MgNH4PO4·6H2O)沉淀物,对渗滤液进行预处理.实验表明:在pH为9.5、药物投加比NH4 ∶Mg2 ∶PO43-为1∶1.3∶1的条件下,渗滤液中NH3-N的去除率达到76.7%,COD去除率为40.7%.最后对预处理出水用Fenton试剂进行氧化处理,实验结果表明:在pH为3、氧化时间为210 min、药剂投加量FeSO4·7H2O为0.04 mol、 H2O2/FeSO4·7H2O投加比例为4∶1时, COD 的去除率达93.81%.  相似文献   

20.
分析固态酿酒废水高COD、高色度和酸性等特点,采用IC-二级AO-MBR工艺处理白酒废水,废水中的COD、BOD_(5)、NH_(3)-N、SS去除率分别是99.7%、99.8%、98.2%、98.4%,出水水质达到《发酵酒精和白酒工业水污染物排放标准》(GB 27631—2011)中表3要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号