首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated Risk Framework for Onsite Wastewater Treatment Systems   总被引:1,自引:0,他引:1  
Onsite wastewater treatment systems (OWTS) are becoming increasingly important for the treatment and dispersal of effluent in new urbanised developments that are not serviced by centralised wastewater collection and treatment systems. However, the current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable onsite wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. This paper highlights an integrated risk based approach for assessing the inherent hazards associated with OWTS in order to manage and mitigate the environmental and public health risks inherent with onsite wastewater treatment. In developing a sound and cohesive integrated risk framework for OWTS, several key issues must be recognised. These include the inclusion of relevant stakeholders throughout framework development, the integration of scientific knowledge, data and analysis with risk assessment and management ideals, and identification of the appropriate performance goals for successful management and mitigation of associated risks. These issues were addressed in the development of the risk framework to provide a generic approach to assessing risk from OWTS. The utilisation of the developed risk framework for achieving more appropriate assessment and management techniques for OWTS is presented in a case study for the Gold Coast region, Queensland State, Australia.  相似文献   

2.
Providing reliable and affordable wastewater treatment in rural areas is a challenge in many parts of the world, particularly in developing countries. The problems and limitations of the centralized approaches for wastewater treatment are progressively surfacing. Centralized wastewater collection and treatment systems are costly to build and operate, especially in areas with low population densities and dispersed households. Developing countries lack both the funding to construct centralized facilities and the technical expertise to manage and operate them. Alternatively, the decentralized approach for wastewater treatment which employs a combination of onsite and/or cluster systems is gaining more attention. Such an approach allows for flexibility in management, and simple as well as complex technologies are available. The decentralized system is not only a long-term solution for small communities but is more reliable and cost effective. This paper presents a review of the various decentralized approaches to wastewater treatment and management. A discussion as to their applicability in developing countries, primarily in rural areas, and challenges faced is emphasized all through the paper. While there are many impediments and challenges towards wastewater management in developing countries, these can be overcome by suitable planning and policy implementation. Understanding the receiving environment is crucial for technology selection and should be accomplished by conducting a comprehensive site evaluation process. Centralized management of the decentralized wastewater treatment systems is essential to ensure they are inspected and maintained regularly. Management strategies should be site specific accounting for social, cultural, environmental and economic conditions in the target area.  相似文献   

3.
Accelerated expansion of wastewater services to small communities in the Middle East and North Africa (MENA) is essential in order to address serious concerns over water scarcity and pollution in addition to meeting the demand for convenience and protecting public health. Centralized and conventional wastewater systems are currently the preferred choice of planners and decision-makers in MENA. Water and funding are not available to provide these centralized conventional services to small communities. This paper presents an integrated approach to sustainable wastewater management for small communities in MENA under the severe water resources crisis. The approach calls for a paradigm shift from centralized conventional wastewater systems to decentralized wastewater systems. Management of wastewater in MENA should start at home. Wastewater generation should be reduced through a combination of domestic water conservation measures. On-site systems must be improved and monitored to control pollution and to recover water for non-potable water uses. Should the circumstances not allow the use of on-site systems, wastewater should be transported and managed through a community system applying the principles of decentralized wastewater management and using the settled sewers for wastewater transportation where appropriate. This approach will facilitate the accelerated and sustainable extension of environmentally responsible wastewater services to MENA's small communities. It offers great potential for cost reduction, accommodates the necessary domestic water conservation efforts, reduces freshwater inputs in wastewater transportation thus eliminating unnecessary demand on freshwater, reduces associated environmental risks and increases wastewater reuse opportunities.  相似文献   

4.
Existing and projected water shortages and related factors have helped focus attention on the need for water reuse. With recent technological advances in wastewater treatment, it is now possible to produce reclaimed water of any quality. Thus, the use of reclaimed water will depend on the reuse opportunities and the cost of the required infrastructure. Historically, centralized wastewater treatment facilities have served the needs of organized societies since the mid 1800s. However, as there are limited options for expansion of most existing centralized facilities, the use of satellite and decentralized wastewater management systems offers significant advantages including being close both to the source of wastewater generation and to potential water reuse applications. The comparative advantages of satellite and decentralized wastewater management systems for a number of water reuse applications are presented and discussed in this paper. Selected case studies are presented to demonstrate the utility of satellite and decentralized wastewater management. Specific issues associated with the application of such systems in existing and in new developments are examined and discussed.  相似文献   

5.
Rapid economic growth and urbanization in China have resulted in great water consumption in recent years. China has been facing increasingly severe water shortage crisis, especially in urban areas. This paper focuses on performance analysis for regional urban water use and wastewater decontamination systems in China. To this end, a DEA-based approach is developed. In the proposed approach, the efficiency of the system is decomposed into water use efficiency and wastewater decontamination efficiency. In the wastewater decontamination sub-system, the purified wastewater (reusable water) is treated as a desirable output; while in the water use sub-system, it is incorporated as a fixed input, which cannot be decreased in the process of efficiency optimization. The efficiency of the system is defined as the average of the two sub-systems’ efficiencies. The proposed approach can find inefficiencies caused by the internal factors between sub-systems, which cannot be identified using the traditional DEA approaches. We finally apply the proposed approach to analyze the efficiencies of regional urban water use and wastewater decontamination systems in China. Based on the application results, some findings and implications for efficiency improvement of urban water management in China are achieved.  相似文献   

6.
Although the application of complex integrated models to wastewater systems is useful, it is often difficult to implement and not always suitable for the design of new systems or for their rehabilitation. Integrated simple approaches that allow assessing the environmental performance of urban wastewater systems may be advantageous, especially during the initial phases of the system planning process. This paper presents an original, straightforward approach that can be used for planning, design and operation of urban wastewater systems. The INtegrated Simplified Approach (INSA) combines the concepts of performance indicators with mass balances and can be applied to wastewater systems as a management support tool, particularly in situations where there is lack of data, economic limitations or time constraints. The INSA was applied to the Algés-Alcantara wastewater system to evaluate its environmental performance and to simulate the individual or combined impact of the rehabilitation measures proposed, thus defining their priority. The results clearly indicate that, despite the investment already made upgrading the wastewater treatment plant (WWTP), the proposed interventions must be implemented to ensure an acceptable environmental performance of the system. In addition, the results demonstrate the significant pollution loads present in stormwater, frequently higher than the pollution loads discharged into receiving waters during dry weather.  相似文献   

7.
Geographic information systems (GIS) use is presented in the problem of sitting areas for construction of natural systems such as stabilization ponds (SPs) for domestic wastewater treatment. For this purpose, several variables, such as topography, land use, type of geological formation, distance to major rivers or lakes, distance to existing cities and villages, existence of environmentally protected areas, mean minimum monthly temperatures and required wastewater effluent characteristics were analyzed with the GIS, in order to accept or reject a particular area within a region. The method is applied in the region of Thrace (Northeast Greece) at the municipal level. The required area for SP systems was calculated in each of the 36 municipalities of Thrace (including two islands, Thassos and Samothraki) as a function of the population of each municipality, temperature and local wastewater effluent discharge criteria. Based on the GIS analysis, suitable locations were identified in each municipality first, and then the total required surface area of these systems was compared to the available surface area of each municipality, in order to decide whether SP systems could be a viable solution to the wastewater management problem in the particular region. In that way the present methodology offers a fast and simple method to check the suitability of new areas for construction of such systems.  相似文献   

8.
ABSTRACT: Optimal policies for supplying rapidly expanding urban centers with additional water supplies are shown to be dependent on water quality goals for the urban effluent. As effluents are required to meet increasingly stringent standards, the unit costs associated with adding capacity to existing wastewater treatment systems to renovate some waters for reuse are shown to substantially decrease. A nonlinear elimination algorithm is developed to delineate optimal policies. A model employing the technique was applied to the wastewater treatment system of a typical urban system and the water quality objectives varied. A comparison of costs with and without various levels of reuse were made and unit costs of reused water under these conditions determined.  相似文献   

9.
ABSTRACT. Two factors affecting the centralization of wastewater treatment facilities were investigated; the cost of collection and treatment systems and the performance of treatment plants. Based on computer-generated minimum cost designs, wastewater collection networks were found to be characterized by diseconomies of scale of magnitude similar to the reported economies of scale for wastewater treatment works. The combined costs of collection and treatment are U-shaped functions from which the least cost size of collection and treatment systems were found for particular values of population density. Examination of the day-to-day performance of five metropoitan-area waste-water treatment plants revealed that, for time series shorter than one month, the day-to-day variation in effluent quality was random, although the variation in quantity discharged was distinctly non-random. The performances of all five plants on any given day showed little correlation. This suggests that the decentralization of treatment facilities can produce benefits both through the reduction in quantities of waste discharged at a given point and through in-stream averaging of the varying performances of several treatment plants. Since the cost function of collection and treatment combined is generally flat in the region of the minimum-cost size, little penalty is invoked to gain the potential benefits of treatment plant decentralization.  相似文献   

10.
Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.  相似文献   

11.
Wastewater collection and treatment is quite important for sustainable management. It would be uneconomical and impractical to provide sewer systems and separate wastewater treatment plants (WWTP) for small communities. The decision process in wastewater planning is rather important in terms of comparing the alternatives considered. The two important points in the management of wastewater at rural areas not connected to a sewer system are to develop an optimized operation strategy and to make sure that the complete system is environmentally and economically sustainable. In some regions, package treatment could be an alternative solution. However, in cases where there is an existing large WWTP, a cluster system, where sewage generated by small communities could be transported via conveyors to a centralized WWTP, could be employed. In this study, the wastewater treatment and disposal problems in small communities were addressed and an alternative wastewater handling scenario was proposed. Additionally, three wastewater handling scenarios were compared. As a case study, Gebze villages were selected.  相似文献   

12.
Abstract: Water managers in arid and semiarid regions increasingly view treated wastewater (effluent) as an important water resource. Artificial recharge basins allow effluent to seep into the ground relieving stressed aquifers, however these basins frequently clog due to physical, chemical, and biological processes. Likewise effluent is increasingly used to maintain perennial base flow for dry streambeds, however, little is known about the impact of effluent on streambed hydraulic conductivity and stream‐aquifer interactions. We address this issue by investigating: if a clogging layer forms, how the formation of a clogging layer alters stream‐aquifer connections, and what hydrologic factors control the formation and removal of clogging layers. We focused on the Upper Santa Cruz River, Arizona where effluent from the Nogales International Waste Water Treatment Plant sustains perennial flow. Monthly sampling, along a 30 km river reach, was done with two foci: physical streambed transformations and water source identification using chemical composition. Historical dataset were included to provide a larger context for the work. Results show that localized clogging occurs in the Upper Santa Cruz River. The clogging layers perch the stream and shallow streambed causing desaturation below the streambed. With these results, a conceptual model of clogging is established in the context of a semiarid hydrologic cycle: formation during the hot premonsoon months when flow is nearly constant and removal by large flood flows (>10 m3/s) during the monsoon season. However, if the intensity of flooding during the semiarid hydrologic cycle is lessened, the dependent riparian area can experience a die off. This conceptual model leads us to the conclusion that effluent dominated riparian systems are inherently unstable due to the clogging process. Further understanding of this process could lead to improved ecosystem restoration and management.  相似文献   

13.
Abstract: A model that incorportaes performace data about data about several wastewater management systems is discussed. From these data the excepted behavior of an individual wastewater system or group of systems can be product of the performace probabilities of its individual components. The modeel can be used on a regional scale facilitating land use planning by allowing accurate estimates of performance for a prospective wastewater management system. At this scale it can allow the impact evaluation of new wastewater technology on land use in a region.  相似文献   

14.
Decision making in natural resource management is becoming increasingly information-intensive because of the rising public concerns about resource conservation and environmental quality. The volume of information that must be analyzed and the complexity of the decision-making process demands that computerized systems be developed to provide decision support services. An integrated systems approach that couples data-base management, geographic information systems, and expert systems is needed. We refer to such an approach as integrated resource management automation (IRMA) and describe a prototype system that is currently being tested in the Nicolet National Forest. This type of information system is likely to play an increasingly important role in the management of natural resources in the future.  相似文献   

15.
We assessed environmental and perceptual correlates of walking and walkability for fifth graders from three communities attending two schools: A new urban/LEED-ND pilot community, mixed, and standard suburban community. Irvine-Minnesota Inventory (IMI) walkability audits showed that new urban blocks provided more traffic safety, pleasurability, crime safety, density, and diversity. New urban routes offered greater traffic safety, accessibility, pleasurability, crime safety, and diversity, but suburban routes had greater housing density, net of controls (parental education, rooms in the home, home ownership, parent preference for child to walk to school). Parents and children perceived new urban routes to be more walkable and children walked more when they lived on more walkable routes. The suburban hierarchical street design exposed children to varied traffic safety conditions by funneling their walks from cul-de-sacs to arterials. The new urban routes to a centrally located school passed by pleasant open spaces, suggesting how community organization can create better walking conditions.  相似文献   

16.
Arthropod communities in pear are conceptualized as hierarchically organized systems in which several levels of organization or subsystems can be recognized between the population level and the community as a whole. An individual pear tree is taken to be the community habitat with arthropod subcommunities developing on leaf, fruit, and wood subcommunity habitats. Each subcommunity is composed of trophically organized systems of populations. Each system of populations is comprised of a functional group or guild of phytophagous arthropods that use the habitat primarily for feeding but also for overwintering or egg deposition, and associated groups of specialized predators, parasitoids, and hyperparasitoids. Several species move from one subcommunity to another during the course of community development and thus integrate community subsystems. Community development or change in organization through time is conceptualized as being jointly determined by the development of the habitat and the organization of the species pool. The influence of habitat development on community development within a species pool is emphasized in this research. Seasonal habitat development is expressed as change in the kinds and biomasses of developmental states of wood, leaf, and fruit subcommunity habitats. These changes are accompanied by changes in the kinds, biomasses, and distributions of associated community subsystems.  相似文献   

17.
利用过滤试验与粒径分布试验分析了钢铁工业达标外排废水的各类污染物特征,结合正交试验对混凝处理效果及混凝工艺中各主要影响因素的影响情况进行研究。结果表明,废水中颗粒物主要以粗分散胶体和悬浮态物质为主,PAC/PAM联用对钢铁废水具有较好的处理效果,可有效降低主要影响废水回用的铁锰类污染物,还去除了大部分的有机物及磷类等污染物,各项出水水质指标均达到《城市污水再生利用工业用水水质》(GB/T19923—2005)所规定的循环冷却水回用水质标准。  相似文献   

18.
ABSTRACT: Vegetated submerged bed wetlands can supplement treatment of onsite wastewater systems. This study evaluated vegetation, media, and seasonal impacts on system performance in six meso scale rock plant filters with and without narrow leaf cattails (Typha augustifolia). Daily chemical oxygen demand (COD) reductions in planted cells averaged 85 percent and weekly total nitrogen (TN) reductions averaged 50 percent. Planted cells had 17 percent greater COD reduction and 76 percent greater TN reduction than unplanted cells, both significant differences. Media type affected COD reduction, particularly in unplanted cells. COD treatment in planted cells was highest for fine crushed limestone (87±13 percent) and least variable for coarse river gravel (85±11 percent). No significant difference in TN reduction was observed for different media types (48 to 51 percent range). Seasonal influences on treatment included a significant decrease during late fall and early spring and a significant increase with temperature. After a step increase in organic loading, treatment efficiency decreased sharply but returned to prior levels after an adaptation period of about one month. Planted cells not only exhibited higher treatment efficiency but also had a retarded organic matter breakthrough, appearing after three to seven times the period for a bromide tracer. This supports a hypothesis that retardation of contaminant movement through the treatment cells results in enhanced removal. These results support the use of rock plant filters, but demonstrate the need to account for performance variations in system design. (KEY TERMS: constructed wetlands; seasonal effects; subsurface flow; Typha augustifolia; onsite wastewater treatment; water quality.)  相似文献   

19.
Current Irish guidelines require a comprehensive site assessment of a percolation area for wastewater disposal before planning permission is granted for dwellings in rural areas. For a site to be deemed suitable, the subsoil must have a percolation value equivalent to a field saturated hydraulic conductivity in the range 0.08 to 4.2 m d(-1) using a falling head percolation test. A minimum of 1.2 m of unsaturated subsoil must also exist below the invert of the percolation area receiving effluent from a septic tank (or 0.6 m for secondary treated effluent). During a 2-yr period, the three-dimensional performance of four percolation areas treating domestic wastewater was monitored. At each site samples were taken at 0, 10, and 20 m along each of the four percolation trenches at depths of 0.3, 0.6, and 1.0 m below each trench to ascertain the attenuation effects of the unsaturated subsoil. The two sites with septic tanks installed performed at least as well as the other two sites with secondary treatment systems installed and appeared to discharge a better quality effluent in terms of nutrient load. An average of 2.1 and 6.8 g total N d(-1) remained after passing through 1-m depth of subsoil beneath the trenches receiving septic tank effluent compared with 12.7 and 16.7 g total N d(-1) on the sites receiving secondary effluent. The research also indicates that the septic tank effluent was of an equivalent quality to the secondary treated effluent in terms of indicator bacteria (E. coli) after percolating through 0.6-m depth of unsaturated subsoil.  相似文献   

20.
O’Grady, Dennis, 2011. Sociopolitical Conditions for Successful Water Quality Trading in the South Nation River Watershed, Ontario, Canada. Journal of the American Water Resources Association (JAWRA) 47(1):39‐51. DOI: 10.1111/j.1752‐1688.2010.00511.x Abstract: The South Nation River watershed has a regulated water quality trading program. Legally, wastewater dischargers must not discharge any increased loading of phosphorus (P) into receiving waters. New wastewater systems are now choosing trading instead of traditional P removal technology, and point source dischargers are buying P credits from rural landowners, primarily farmers. These credits are generated by constructing nonpoint source pollution control measures. Mathematical formulae are used to calculate the credits of P removed by each measure. A successful trading program requires several conditions, including community agreement, legislative backing, credit and cost certainty, simplified delivery and verification, written instruments, and legal liability protection. South Nation Conservation, a community‐based watershed organization, is the broker handling the transactions for these P credits. The program is run by a multi‐stakeholder committee, and all project field visits are done by farmers and not paid professionals. An independent evaluation showed higher opinions for the broker and regulatory agency, and most farmers were willing to, or had already, recommended the program to other farmers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号