首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-beta-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0x10(-6)-1.0x10(-3)mM for benzo[a]pyrene and 6.0x10(-6)-1.2x10(-3)mM for pyrene in 10mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9x10(-6) and 5.4x10(-6)mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-beta-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil.  相似文献   

2.
Hydrophobic chemicals are known to associate with sediment particles including those from both suspended particulate matter and bottom deposits. The complex and variable composition of natural particles makes it very difficult therefore, to predict the bioavailability of sediment-bound contaminants. To overcome these problems we have previously devised a test system using artificial particles, with or without humic acids, for use as an experimental model of natural sediments. In the present work we have applied this experimental technique to investigate the bioavailability and bioaccumulation of pyrene by the freshwater fingernail clam Sphaerium corneum. The uptake and accumulation of pyrene in clams exposed to the chemical in the presence of a sample of natural sediment was also investigated. According to the results obtained, particle surface properties and organic matter content are the key factors for assessing the bioavailability and bioaccumulation of pyrene by clams.  相似文献   

3.
Benzo[a]pyrene (BaP) biodegradation by Stenotrophomonas maltophilia was studied under the influence of co-existed Cu(II) ions. About 45% degradation was achieved within 3 d when dealing with 1 mg L?1 BaP under initial natural pH at 30 °C; degradation reached 48% in 2 d at 35 °C. Efficacy of BaP biodegradation reached the highest point at pH 4. In the presence of 10 mg L?1 Cu(II) ions, the BaP removal ratio was 45% on 7th day, and maintained stable from 7 to 14 d at 30 °C under natural pH. The favorable temperature and pH for BaP removal was 25 °C and 6.0 respectively, when Cu(II) ions coexisted in the solutions. Experiments on cometabolism indicated that S. maltophilia performed best when sucrose was used as an additional carbon source. GC–MS analysis revealed that the five rings of BaP opened, producing compounds with one or two rings which were more bioavailable.  相似文献   

4.
Verge C  Moreno A  Bravo J  Berna JL 《Chemosphere》2001,44(8):1749-1757
In the present work, the influence of Ca2+ concentration on the toxicity of single cut linear alkylbenzene sulfonate (LAS) homologues was studied. Precipitation boundary diagrams for each homologue were obtained, indicating turbid and clear zones depending on the LAS and Ca2+ concentrations. The separation between transparent and turbid zones is given by the so-called precipitation line. LAS toxicity to Daphnia magna was determined at concentrations close to this precipitation line. It was observed that when Ca(LAS)2 precipitation progresses, LAS bioavailability decreases for test animals, and the toxicity diminishes even at high nominal LAS concentrations. According to the “free ion activity model” (FIAM), the toxicity of a given chemical compound is mainly due to the ionic species (Ca2+–LAS) and not due to the precipitated molecule, Ca(LAS)2. The significance of the present study is in connection with the assessment of LAS sorption/precipitation studies in soils and sediments, where in situ toxicity is strongly influenced by Ca2+/Mg2+ ions, according to the results presented in this work.  相似文献   

5.
A study was conducted to investigate whether cyclodextrins and surfactants can be used to predict polycyclic aromatic hydrocarbon (PAH) bioavailability in contaminated sediments. Two sediment samples were extracted with aqueous solutions of hydroxypropyl-beta-cyclodextrin (HPCD) and Triton X-100. PAH removal during extraction was compared with PAH removal during biodegradation and solid-phase extraction. The latter two methods were used as reference methods to establish which part of the PAHs could be biodegraded and to what extent biodegradation was governed by bioavailability limitations. It was demonstrated that HPCD extraction followed solid-phase extraction and removed primarily readily bioavailable PAHs, while Triton X-100 extracted both readily and poorly bioavailable PAHs. Moreover, HPCD did not affect the degradation of PAHs in biodegradation experiments, while Triton X-100 enhanced the degradation of low molecular weight PAHs. It was concluded that HPCD extraction may provide a good method for the prediction of PAH bioavailability. Triton X-100 extraction is unfit for the prediction of PAH bioavailability.  相似文献   

6.
This study examined the toxicological interaction between glyphosate (or its formulation, Roundup) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited "less than additive" mixture toxicity, with 48-h LC50 toxic unit > 1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur.  相似文献   

7.
Russo L  Rizzo L  Belgiorno V 《Chemosphere》2012,87(6):595-601
The combination of ozonation and spent mushroom compost (SMC)-mediated aerobic biological treatment was investigated in the removal of benzo(a)pyrene from contaminated soil. The performances of the process alone and combined were evaluated in terms of benzo(a)pyrene removal efficiency, mineralization efficiency (as total organic carbon removal), and soil residual toxicity (phytotoxicity to Lepidium Sativum and toxicity to Vibrio fischeri). In spite of the removal efficiency (35%) obtained by SMC-mediated biological process as a stand-alone treatment, the combined process showed a benzo(a)pyrene concentration reduction higher than 75%; the best removal (82%) was observed after 10 min pre-ozonation treatment. In particular, ozonation improved the biodegradability of the contaminant, as confirmed by the increase of CO(2) production (close to 70% compared to the control), mineralization (greater than 60%) and bacterial density (which increased by two orders of magnitude). Moreover, according to phytotoxicity tests on L. Sativum, the aerobic biological process of pre-ozonated soil decreased toxicity. According to the results achieved in the present study, ozonation pre-treatment showed an high potential to overcome the limitation of bioremediation of recalcitrant compound, but it should be carefully operated in order to maximize PAH removal efficiency as well as to minimize soil residual toxicity which can result from the formation of the oxidation intermediates.  相似文献   

8.
Maki T  Hirota W  Motojima H  Hasegawa H  Rahman MA 《Chemosphere》2011,83(11):1486-1492
Aquatic arsenic cycles mainly depend on microbial activities that change the arsenic chemical forms and influence human health and organism activities. The microbial aggregates degrading organic matter are significantly related to the turnover between inorganic arsenic and organoarsenic compounds. We investigated the effects of microbial aggregates on organoarsenic mineralization in Lake Kahokugata using lake water samples spiked with dimethylarsinic acid (DMA). The lake water samples converted 1 μmol L−1 of DMA to inorganic arsenic for 28 d only under anaerobic and dark conditions in the presence of microbial activities. During the DMA mineralization process, organic aggregates >5.0 μm with bacterial colonization increased the densities. When the organic aggregates >5.0 μm were eliminated from the lake water samples using filters, the degradation activities were reduced. DMA in the lake water would be mineralized by the microbial aggregates under anaerobic and dark conditions. Moreover, DMA amendment enhanced the degradation activities in the lake water samples, which mineralized 50 μmol L−1 of DMA. The DMA-amended aggregates >5.0 μm completely degraded 1 μmol L−1 of DMA with a shorter incubation time of 7 d. The supplement of KNO3 and NaHCO3 to lake water samples also shortened the DMA-degradation period. Presumably, the bacterial aggregates involved in the chemical heterotrophic process would contribute to the DMA-biodegradation process in Lake Kahokugata, which is induced by the DMA amendment.  相似文献   

9.
The present study reports the effect of surfactants (rhamnolipids and triton X-100) on biodegradation of atrazine herbicide by strain A6, belonging to the genus Acinetobacter. The strain A6 was able to degrade nearly 80 % of the 250-ppm atrazine after 6 days of growth. The bacterium degraded atrazine by de-alkylation process. Bacterial cell surface hydrophobicity as well as atrazine solubility increased in the presence of surfactant. However, addition of surfactant to the mineral salt media reduced the rate and extent of atrazine degradation by decreasing the bioavailability of herbicide. On the contrary, addition of surfactant to atrazine-contaminated soil increased the rate and extent of biodegradation by increasing the bioavailability of herbicide. As compared to triton X-100, rhamnolipids were more efficient in enhancing microbial degradation of atrazine as a significant amount of atrazine was removed from the soil by rhamnolipids. Surfactants added for the purpose of hastening microbial degradation may have an unintended inhibitory effect on herbicide degradation depending upon contiguous condition, thus highlighting the fact that surfactant must be judiciously used in bioremediation of herbicides.  相似文献   

10.
Xie XM  Liao M  Yang J  Chai JJ  Fang S  Wang RH 《Chemosphere》2012,88(10):1190-1195
The effect of ryegrass (Lolium perenne L.) root-exudates concentration on pyrene degradation and the microbial ecological characteristics in the pyrene contaminated soil was investigated by simulating a gradually reducing concentration of root exudates with the distance away from root surface in the rhizosphere. Results showed that, after the root-exudates were added 15 d, the pyrene residue in contaminated soil responded nonlinearly in the soils with the same pyrene contaminated level as the added root-exudates concentration increased, which decreased first and increased latter with the increase of the added root-exudates concentration. The lowest pyrene concentration appeared when the root exudates concentration of 32.75 mg kg(-1) total organic carbon (TOC) was added. At the same time, changes of microbial biomass carbon (MBC, C(mic)) and microbial quotient (C(mic)/C(org)) were opposite to the trend of pyrene degradation as the added root-exudates concentration increased. Phospholipid fatty acid (PLFA) analysis revealed that bacteria was the dominating microbial community in pyrene contaminated soil, and the changing trends of pyrene degradation and bacteria number were the same. The changing trend of endoenzyme-dehydrogenase activity was in accordance with that of soil microbe, indicating which could reflect the quantitative characteristic of detoxification to pyrene by soil microbe. The changes in the soils microbial community and corresponding microbial biochemistry characteristics were the ecological mechanism influencing pyrene degradation with increasing concentration of the added root-exudates in the pyrene contaminated soil.  相似文献   

11.
PURPOSE: 1,2,3-Trichloropropane (TCP) is a persistent groundwater pollutant and a suspected human carcinogen. It is also is an industrial chemical waste that has been formed in large amounts during epichlorohydrin manufacture. In view of the spread of TCP via groundwater and its toxicity, there is a need for cheap and efficient technologies for the cleanup of TCP-contaminated sites. In situ or on-site bioremediation of TCP is an option if biodegradation can be achieved and stimulated. This paper presents an overview of methods for the remediation of TCP-contaminated water with an emphasis on the possibilities of biodegradation. CONCLUSIONS: Although TCP is a xenobiotic chlorinated compound of high chemical stability, a number of abiotic and biotic conversions have been demonstrated, including abiotic oxidative conversion in the presence of a strong oxidant and reductive conversion by zero-valent zinc. Biotransformations that have been observed include reductive dechlorination, monooxygenase-mediated cometabolism, and enzymatic hydrolysis. No natural organisms are known that can use TCP as a carbon source for growth under aerobic conditions, but anaerobically TCP may serve as electron acceptor. The application of biodegradation is hindered by low degradation rates and incomplete mineralization. Protein engineering and genetic modification can be used to obtain microorganisms with enhanced TCP degradation potential.  相似文献   

12.
Changes in bioavailability of pyrene in three uncontaminated soils were examined under aerobic and anaerobic conditions. Three soils were aerobically aged with pyrene and [(14)C]pyrene for 63 days, then incubated with water, nitrate, or sulfate under aerobic or anaerobic conditions for one year. Under aerobic conditions, microorganisms in two soils mineralized 58-82% of the added [(14)C]pyrene. The two soils amended with nitrate were seen to have enhanced aerobic mineralization rates. In one of these soils, non-extractable pyrene was seen to decrease over the course of the study due to desorption and mineralization, nitrate amendment enhanced this effect. Under anaerobic conditions, generated with a N(2):CO(2)(g) headspace, two soils with nitrate or sulfate amendment showed an increase in extractable [(14)C]pyrene at 365 days relative to inhibited controls, presumably due to microbially mediated oxidation-reduction potential and pH alteration of the soil environment. These observations in different soils incubated under aerobic and anaerobic conditions have important implications relative to the impact of microbial electron acceptors on bioavailability and transport of non-polar organic compounds in the environment suggesting that, given enough time, under the appropriate environmental conditions, non-extractable material becomes bioavailable. This information should be considered when assessing site specific exposure risks at PAH contaminated locations.  相似文献   

13.
Bioremediation of mixed metal–organic soil pollution constitutes a difficult task in different ecosystems all around the world. The aims of this work are to determine the capacity of two spent mushroom substrates (Agaricus bisporus and Pleurotus ostreatus) to immobilize Cd and Pb, to assess the effect of these metals on laccase activity, and to determine the potential of spent A. bisporus substrate to biodegrade four polycyclic aromatic hydrocarbons (PAH): fluorene, phenanthrene, anthracene, and pyrene, when those toxic heavy metals Cd and Pb are present. According to adsorption isotherms, spent P. ostreatus and A. bisporus substrates showed a high Pb and Cd adsorption capacity. Pb and Cd interactions with crude laccase enzyme extracts from spent P. ostreatus and A. bisporus substrates showed Cd and Pb enzyme inhibition; however, laccase activity of A. bisporus presented lower inhibition. Spent A. bisporus substrate polluted with PAH and Cd or Pb was able to biodegrade PAH, although both metals decrease the biodegradation rate. Spent A. bisporus substrate contained a microbiological consortium able to oxidize PAH with high ionization potential. Cd and Pb were immobilized during the bioremediation process by spent A. bisporus substrate. Consequently, spent A. bisporus substrate was adequate as a multi-polluted soil bioremediator.  相似文献   

14.
Influence of ageing on zinc bioavailability in soils   总被引:5,自引:0,他引:5  
Currently, soil quality criteria or soil risk assessments of metals are based on laboratory toxicity tests which are carried out in soils freshly spiked with metal salts. With these data, species sensitivity distributions are fitted, from which hazardous concentrations and predicted no effect concentrations are derived. However, due to long-term processes, called ageing, soil metal availability decreases with time. Here we show that pH is the most important parameter determining the effect of ageing on zinc partitioning in soils, with the effect of ageing becoming more important with increasing pH. Furthermore, zinc bioavailability, expressed as the internal zinc concentrations in red clover (Trifolium pratense) is closely related to pore water zinc concentration. In addition, there is a clear dose-response relationship between the survival of the earthworm Eisenia fetida and the calcium chloride-extracted zinc fraction. These results indicate that zinc partitioning can be used to predict zinc bioavailability to terrestrial organisms. However, the use of spiked soils in toxicity assays can result in an over-estimation of the effects of zinc, especially at a high pH.  相似文献   

15.
John R. Parsons 《Chemosphere》1992,25(12):1973-1980
Little is known of how the uptake and degradation of highly hydrophobic compounds, such as polychlorinated dibenzo-p-dioxins (PCDDs), by microorganisms is influenced by sorption of these compounds to sediment. In this study aqueous solutions of a mixture of 2-chloro-, 1,3-dichloro-, 2,8-dichloro- and 1,2,4-trichlorodibenzo-p-dioxins were first incubated for 24 days with 100 mg/l suspended sediment. Subsequently, the degradation of the PCDDs in these sediment suspensions by Alcaligenes sp. strain JB1 was compared to that in solutions which did not contain sediment. The amounts of all four compounds degraded in the sediment suspensions after 168 h were greater than those initially present in the dissolved phase, based on their calculated sediment-water partition coefficients. The sorbed fractions were therefore sufficiently readily desorbed to be partly degraded. However, the biodegradation rates were lower in the sediment suspensions than in the solutions.  相似文献   

16.
《Chemosphere》1987,16(6):1361-1370
The relationship between membrane permeation rate and biodegradation rate has been investigated for alkyl esters of p-aminobenzoic acid. The pseudo-first order biodegradation rate constants of these compounds increase with increasing alkyl chain length, and increasing hydrophobicity, until alkyl chain lengths of greater than five carbon atoms, for which the biodegradation rate constants remain constant. This relationship between biodegradation rate constant and hydrophobicity parallels that of the permeabilities of lipid membranes and aqueous diffusion layers towards these compounds. This indicates that the rate-determining step in the biodegradation of these esters is their diffusion into bacterial cells, and that they then undergo rapid transformation.  相似文献   

17.
研究了非离子型表面活性剂Triton X-100(TX-100)和Tween80(TW-80)对苯并[a]芘的增溶特性及对苯并[a]芘高效降解菌Bacillus pumilus strain Bap9生长的影响,结果表明,2种表面活性剂对苯并[a]芘均有良好的增溶效果,均能作为碳源和能源被菌株Bap9所利用,TX-100增溶能力和增殖能力相对更强;不同浓度的TX-100对菌株降解苯并[a]芘的影响不同,当浓度为1 000 mg/L时,对降解的促进作用最强,可将苯并[a]芘降解率提高20.8%;在苯并[a]芘降解过程中,TX-100亦能作为碳源被菌株Bap9利用,不产生二次污染,因此可用于苯并[a]芘污染环境的生物修复。  相似文献   

18.
In this study, the influence of the co-existence of TiO2 nanoparticles on the speciation of arsenite [As(III)] was studied by observing its adsorption and valence changing. Moreover, the influence of TiO2 nanoparticles on the bioavailability of As(III) was examined by bioaccumulation test using carp (Cyprinus carpio). The results showed that TiO2 nanoparticles have a significant adsorption capacity for As (III). Equilibrium was established within 30 min, with about 30% of the initial As (III) being adsorbed onto TiO2 nanoparticles. Most of aqueous As (III) was oxidized to As(V) in the presence of TiO2 nanoparticles under sunlight. The carp accumulated considerably more As in the presence of TiO2 nanoparticles than in the absence of TiO2 nanoparticles, and after 25-day exposure, As concentration in carp increased by 44%. Accumulation of As in viscera, gills and muscle of the carp was significantly enhanced by the presence of TiO2 nanoparticles.  相似文献   

19.
从纺织废水污泥中筛选出了具有PVA降解能力的混合菌B07.通过正交实验得出其降解PVA的最佳条件:温度为35℃,pH为7,氮源为牛肉膏.在此条件下,B07对PVA1799模拟废水处理96 h时COD的去除率达64%.同时考察了PVA聚合度和醇解度对其降解性能的影响,结果表明,PVA聚合度越大,醇解度越高,其降解效率越差...  相似文献   

20.
《Chemosphere》1987,16(6):1193-1203
PCDDs and PCDFs were administered as fly ash (500 mg) or fly ash extract to male Wistar rats. The extract was administered orally and intravenously by using arachidis oil and miglyol 812 as oily vehicles. Liver retentions were determined after 48 hours as a degree of bioavailability. In all experiments only the 2,3,7,8-substituted congeners, with the exception of 2,3,4,6,7-PnCDF, were detected in the liver. The dose was 10 to 40 ng for each congener. The lowest bioavailability was found in the experiments with crude or hydrochloric acid pretreated fly ash. Liver retentions were comparable for both experiments with fly ash (0.4 – 3.8%) and were approximately 10 times higher in the oral experiments with oily vehicles. Miglyol 812 produced slightly lower liver retentions compared with arachidis oil. Intravenous dosage with miglyol 812 resulted in liver retentions twice as high as oral administration with this vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号