首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

An investigative biomonitoring study was conducted along the coastal area of Laizhou Bay (China) to evaluate the impact of organic pollution on the clam Ruditapes philippinarum using bioaccumulation and multi-biomarker measurements. In addition, the polychlorinated biphenyls (PCBs), total petroleum hydrocarbons (TPHs) and nonylphenol (NP) content in surface sediment at the study sites were also analyzed. Concentrations of PCBs, TPHs and NP in the sediments of the study area were 1.90 ± 0.10 μg kg?1, 39.55 ± 2.42 mg kg?1, 9.23 ± 0.41 μg kg?1 dry weight, respectively, while the organic contaminants in the soft tissues of R. philippinarum were 14.81 ± 0.96 μg kg?1 for PCBs, 165.87 ± 5.03 mg kg?1 for TPHs and 86.16 ± 5.29 μg kg?1 for NP. Linear regression analysis on the levels of organic pollutants accumulated in R. philippinarum and in sediments showed no significant correlation. Multi-biomarkers including superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, total glutathione and lipid peroxidation were assayed in gills and digestive glands of R. philippinarum. Finally, the biomarkers in gills were selected to calculate the Integrated Biomarker Response (IBR) index and to evaluate the impact of the three organic contaminants on R. philippinarum collected from different sites. According to IBR results, the western coast and eastern coast exhibited higher environmental stress than the sampling sites along the southern coast of Laizhou Bay. Significant correlation was found between the level of organic contaminants in the sediments and IBR whereas no dependence was found between pollutants’ concentrations in sediments and separate biomarker responses. The results showed that PCBs and NP were the main organic pollutants among the three studied which have caused pollution pressure on R. philippinarum in Laizhou Bay coastal area.

  相似文献   

2.
The effects of permethrin (PER) on a panel of antoxidant enzymes; superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and indices of protein oxidation status (carbonylation and free thiols) were determined in digestive gland and gills of the clam Ruditapes decussatus. Animals were exposed to 100 ppb PER for 2 days. These enzyme activities increased significantly in digestive gland (p?<?0.05) after PER treatment and oxidative modification of proteins was detected in both gill and digestive gland extracts using redox proteomics. PER exposure significantly reduced the amount of protein free thiol groups in digestive gland rather than in gill, when compared to controls. Conversely, digestive gland showed significantly higher levels of carbonylated proteins than gill after PER exposure. Some proteins were successfully identified by mass spectrometry of tryptic peptides. Our data suggest that digestive gland of R. decussatus can be used as a model tissue for investigating environmental risk of PER contamination.  相似文献   

3.
Li X  Lin L  Luan T  Yang L  Lan C 《Chemosphere》2008,70(10):1903-1909
Environmental contaminants with estrogenic activity have recently attracted attention due to their potential detrimental effects on the reproduction of human and wildlife. The aim of this study was to evaluate the use of endogenous glutathione and glutathione-related enzymes as biomarkers of exposure to landfill leachate effluent and bisphenol A (BPA) in the freshwater snail, Bellamya purificata. Following exposure to 1%, 5% and 10% landfill leachate effluent and 1, 10, 50 and 100mugl(-1) BPA for 0, 2, 7 and 15d, activities of glutathione S-transferase (GST), selenium-dependent glutathione peroxidase (SeGPx) and glutathione reductase (GR) and levels of total glutathione were measured in the gills and digestive glands of the snails. GST and total glutathione were the most sensitive parameters in both exposure scenarios. GST activities increased by about 80%, while total glutathione decreased to 70% and 80% in the gills and digestive glands, respectively. In contrast, SeGPx and GR activities remained at the same levels in all the treatment groups compared with those of controls. The results indicated that among glutathione and glutathione-related enzymes, GST activity and total glutathione level, which showed dose-dependent dynamics, could be used as biomarkers of aquatic ecosystems contaminated with landfill leachate.  相似文献   

4.
Polygodial is a drimane sesquiterpene dialdehyde derived from certain terrestrial plant species that potently inhibits ascidian metamorphosis, and thus has potential for controlling fouling ascidians in bivalve aquaculture. The current study examined the effects of polygodial on a range of biochemical biomarkers of oxidative stress and detoxification effort in the gills of adult Perna canaliculus Gmelin. Despite high statistical power and the success of positive controls, the antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GPOX), catalase (CAT), and superoxide dismutase (SOD); thiol status, as measured by total glutathione (GSH-t), glutathione disulphide (GSSG), and GSH-t/GSSG ratio; end products of oxidative damage, lipid hydroperoxides (LHPO) and protein carbonyls; and detoxification pathways, represented by GSH-t and glutathione S-transferase (GST), were unaffected in the gills of adult P. canaliculus exposed to polygodial at 0.1 or 1 × the 99% effective dose in fouling ascidians (IC99). Similarly, GR levels, thiol status, and detoxification activities were unaffected in mussels exposed to polygodial at 10 × the IC99, although GPOX, CAT, and SOD activities increased. However, the increases were small relative to positive controls, no corresponding oxidative damage was detected, and this concentration greatly exceeds effective doses required to inhibit fouling ascidians in aquaculture. These findings compliment a previous study that established the insensitivity to polygodial of P. canaliculus growth, condition, and mitochondrial functioning, providing additional support for the suitability of polygodial for use as an antifouling agent in bivalve aquaculture.  相似文献   

5.
Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to AsIII and AsV were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST Ω), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb AsV. Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST Ω compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to AsIII and AsV can induce different responses in gills and liver of this aquatic organism.  相似文献   

6.
The current study investigated oxidative stress parameters (enzymes activities, metallothionein content and lipid peroxidation) in freshwater fish, Oreochromis niloticus, tilapia exposure to Monjolinho River (in 4 months of year: January, April, July and November). One critical site in Monjolinho River (site B) was assessed in comparison to a reference site (site A). Water pH and oxygen concentration was lower than that recommended by CONAMA (Brazilian National Environmental Committee), resolution 357/2005 for protection of aquatic communities, and ammonium and the metals Cu, Zn, Mn and Fe (on all months) concentrations were higher than the maximum concentration recommended. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly decreased in liver and muscle in tilapia from Monjolinho River, throughout the year, in relation to reference except in gills that SOD activity increased. Glutathione S-transferase (GST) activity was significantly increased in liver of the tilapia from Monjolinho River in all sites, in relation to reference except in gills that GST activity increased in July and decreased in November, suggesting that GST activity could be induced to neutralize the pollutants toxicity. On the other hand, GST activity was significantly decreased in white muscle indicating a toxic effect of pollutants, resulting in a decreased ability of tilapia to perform defense reactions associated to GSTs. The decrease of catalase (CAT) activity in gills of the O. niloticus together with the increase of SOD activity, could explain the increased lipid peroxidation (LPO) level in this organ. Metallothionein levels in liver and gills were significantly high in all sites. Results indicate that the exposure to metals caused severe damage to tissues; despite the consensually assumed antioxidant induction as a sign of exposure to contaminants the effects seem in part to be mediated by suppression of antioxidant system with SOD, CAT and GPx as potential candidates for tissues toxicity biomarkers of pollutants.  相似文献   

7.
This study aimed to investigate the interactions of two abiotic factors (temperature and salinity) and deltamethrin (pyrethroid pesticide) exposure on some oxidative stress biomarkers as well as on acetylcholinesterase activity (AChE) in hepatopancreas, gills and muscle of black tiger shrimp (Penaeus monodon). A combination of three temperatures (24, 29 and 34 °C), two salinities (15 and 25 ppt), and the absence or presence of 0.1 μg L−1 deltamethrin was applied on shrimp during 4 d under laboratory conditions. Lipid peroxidation level (LPO) and glutathione S-transferase activity (GST) were not affected by combined effect of temperature, salinity and deltamethrin in any of the studied tissues. Deltamethrin impaired other tested oxidative stress biomarkers, i.e. total glutathione (tGSH), catalase (CAT), glutathione peroxidase (GPx). tGSH level significantly increased in hepatopancreas due to deltamethrin exposure mainly at 34 °C, while pesticide effects on tGSH and CAT activity in gills were influenced by both temperature and salinity. In addition, GPx activity in hepatopancreas decreased after deltamethrin treatment mainly at 24 °C. Finally, AChE in muscle was strongly inhibited by deltamethrin at all tested temperatures and salinities. These novel findings demonstrate that interactions between abiotic factors and a commonly used pesticide exposure should be taken into account when analyzing some widespread biomarkers in black tiger shrimp.  相似文献   

8.
Verlecar XN  Jena KB  Chainy GB 《Chemosphere》2008,71(10):1977-1985
Sub-lethal effects of mercury exposure (110th of LC(50), i.e. 0.045 mg l(-1)) for 5, 10 and 15 d was investigated on oxidative stress parameters and antioxidant defences in digestive gland of Perna viridis. In addition to this an in vitro effect of mercury single and supplemented with reduced glutathione on lipid peroxidation was studied. Increased lipid peroxidation (during first 10 days and also during in vitro exposures), protein carbonyl and hydrogen peroxides (from 5th till last day of exposure) indicate the resultant oxidative stress in the mercury exposed specimen. DNA damage (F-value) response although less distinct on 5th and 15th d, its low values on 10th d and significant correlation with hydrogen peroxide suggests the toxic role of free radicals towards DNA integrity. Superoxide dismutase, which remains low initially (5th d) and increases later suggests its immediate response against superoxide radical. Higher activities of catalase, glutathione peroxidase and glutathione reductase on 15th d and glutathione-S-tranferase from 10th d onwards suggests the adaptive behaviour of the tissue against oxyradicals. Increasing levels of non-enzymatic antioxidant molecules, such as reduced glutathione and ascorbic acid indicated its involvement in counteracting oxidative damage. Further role of reduced glutathione in reducing Hg toxicity is evident in in vitro experiments where lipid peroxidation remains low in mercury concentrations supplemented with reduced glutathione. The elevated levels of metallothionein from 5th to 10th d suggest involvement of this protein in detoxification of reactive oxygen species and toxic metal. The above results suggest that both enzymatic and non-enzymatic antioxidants play an important role in protecting cell against Hg toxicity, which can be used as a biomarker of metal contamination in aquatic environment.  相似文献   

9.
Marine macroalgae have evolved a different mechanism to maintain physiological concentrations of essential metal ions and non-essential metals. The objective of the present work was to evaluate the antioxidant response and DNA damage of copper and cadmium ions in three halophytes, namely, Acanthophora spicifera, Chaetomorpha antennina, and Ulva reticulata. Accumulation of copper was significantly higher (P?P?U. reticulata > A. spicifera > C. antennina. DNA damage index analysis supported that copper was significantly (P?相似文献   

10.
Ubiquitination and carbonylation of proteins were investigated in the gill and digestive gland of Ruditapes decussatus exposed to NP (nonylphenol) (100 μgL(-1)) using redox proteomics. After 21 d of exposure, clams were dissected and cytosolic proteins of both tissues separated by 2DE SDS-PAGE. Protein expression profiles were tissue-dependent and differently affected by NP exposure. Ubiquitination and carbonylation were also tissue-specific. NP exposure induced significantly more ubiquitinated proteins in gills than in digestive glands, compared to controls. Digestive gland showed a significant higher number of carbonylated proteins than gills after NP exposure. Protein ubiquitination and carbonylation are therefore independent processes. Results showed that NP exposure generated ROS in gill and digestive gland of R. decussatus that significantly altered the proteome. Results also highlighted the advantage of using redox proteomics in the assessment of protein ubiquitination and carbonylation, which may be markers of oxidative stress in R. decussatus.  相似文献   

11.
Biomarkers comprising activities of biotransformation enzymes (ethoxyresorufin-O-deethylase -EROD-, dibenzylfluorescein dealkylase -DBF-, glutathione S-transferase -GST), antioxidant enzymes (glutathione reductase -GR- and glutathione peroxidase -GPX), lipid peroxidation -LPO- and DNA strand breaks were analyzed in the clam Ruditapes philippinarum caged at Cádiz Bay, Santander Bay and Las Palmas de Gran Canaria (LPGC) Port (Spain). Sediments were characterized. Digestive gland was the most sensitive tissue to sediment contamination. In Cádiz Bay, changes in LPO regarding day 0 were related with metals. In LPGC Port, DBF, EROD, and GST activity responses suggested the presence of undetermined contaminants which might have led to DNA damage. In Santander Bay, PAHs were related with EROD activity, organic and metal contamination was found to be associated with GR and GST activities and DNA damage presented significant (p < 0.05) induction. R. philippinarum was sensitive to sediment contamination at biochemical level. Biomarkers allowed chemical exposure and sediment quality assessment.  相似文献   

12.
Acetaminophen (paracetamol) is one of the most used pharmaceutical drugs, due to its antipyretic and analgesic properties that turn it into a primary choice in varied pathologies and conditions. However, and despite its massive use, acetaminophen is not exempt of adverse effects, especially when administered in over dosage, which are related to the formation of toxic metabolites by oxidative pathways. It is thus possible to observe that toxicity caused by acetaminophen is usually mediated by reactive oxygen species and can result in multiple effects, ranging from protein denaturation to lipid peroxidation and DNA damage. The occurrence of acetaminophen has been reported in the aquatic environment, being important to address the potential exertion of toxic effects on nontarget environmentally exposed organisms. The present study intended to characterize the effects of acute acetaminophen exposure on physiological traits (antioxidant defense, oxidative damage) of two species of bivalves, namely, the edible clams Venerupis decussata and Venerupis philippinarum. Results showed a significant increase in all oxidative stress biomarkers, evidencing the bioactivation of acetaminophen into a deleterious prooxidant, triggering the onset of deleterious effects. Furthermore, strong interspecific differences were observed among responses of the two tested species, which was a major issue due to intrinsic ecological implications when one considers that both species share the same habitat.  相似文献   

13.
Bioaccumulation and toxicity of copper was evaluated on Potamogeton pusillus L. The effect of copper (5–100 μg L?1) applied for several days was assessed by measuring changes in the chlorophyll's, phaeophytin's, malondialdehyde, electrical conductivity, glutathione peroxidase (GPX), glutathione reductase (GR) and guaiacol peroxidase (POD) activities. Plants accumulated copper with a maximum of 162 μg g?1 dw after 7-days exposure at 100 μg L?1, however most of the metal was accumulated after 1-day exposure. The toxic effect caused by Cu was evident by the reduction of photosynthetic pigments, increase of malondialdehyde and electrical conductivity. P. pusillus shows Cu-induced oxidative stress by modulating antioxidant enzymes like GPX, GR and POD. Antioxidant enzymes activity increased significantly after exposure to 40 μg L?1 during 24 h, followed by a drop at longer times. Thus, P. pusillus is proposed as a good biomonitor for the assessment of metal pollution in aquatic ecosystems.  相似文献   

14.
Biomonitoring organophosphate (OP) exposure in marine environments is generally achieved by the measurement of acetylcholinesterase activity in bivalves like mussels. However, there is evidence that indicates that oxidative stress may be implied in OP toxicity. The aim of this study was to evaluate the relationship between survival from the OP insecticide fenitrothion and glutathione levels in marine bivalves. Mussels (Mytilus galloprovincialis Lam.) and scallops (Flexopecten flexuosus Poli) were exposed, in a time to death test, to their LC85 of fenitrothion for 96 h. OP-poisoned mussels showed reduced (GSH) and oxidised (GSSG) glutathione depletion in the digestive gland, muscle and gills. Pectinid spats exposed to this insecticide presented GSH depletion in the digestive gland and mantle, and a reduction of the GSH/GSSG ratio in gills and mantle. Although survival curves were significantly different and mussels withstood twice as much fenitrothion as pectinid spats, muscular GSH/GSSG ratio was highly related to mortality in both species. We suggest that an impairment in the glutathione redox status could result in an induction of the cell death, either by apoptosis or necrosis, leading ultimately to the death of the organism. We conclude that whereas glutathione depletion can be used as a biomarker of exposure, the muscular GSH/GSSG ratio might be used as a biochemical marker of effect and individual susceptibility to mortality of marine bivalves exposed to fenitrothion or other pollutants that induce oxidative stress.  相似文献   

15.
Environmental pollutants polychlorinated biphenyls (PCBs), especially dioxin-like PCBs, cause oxidative stress and associated toxic effects, including cancer and possibly atherosclerosis. We previously reported that PCB 126, the most potent dioxin-like PCB congener, not only decreases antioxidants such as hepatic selenium (Se), Se-dependent glutathione peroxidase, and glutathione (GSH) but also increases levels of the antiatherosclerosis enzyme paraoxonase 1 (PON1) in liver and serum. To probe the interconnection of these three antioxidant systems, Se, GSH, and PON1, we examined the influence of varying levels of dietary Se and N-acetylcysteine (NAC), a scavenger of reactive oxygen species (ROS) and precursor for GSH synthesis, on PON1 in the absence and presence of PCB 126 exposure. Male Sprague–Dawley rats, fed diets with differing Se levels (0.02, 0.2, or 2 ppm) or NAC (1 %), were treated with a single intraperitoneal injection of corn oil or various doses of PCB 126 and euthanized 2 weeks later. PCB 126 significantly increased liver PON1 mRNA, protein level and activity, and serum PON1 activity in all dietary groups but did not consistently increase thiobarbituric acid levels (thiobarbituric acid reactive substances, TBARS), an indicator of lipid oxidation and oxidative stress, in liver or serum. Inadequate (high or low) dietary Se decreased baseline and PCB 126-induced aryl hydrocarbon receptor (AhR) expression but further increased PCB 126-induced cytochrome P450 1A1 (CYP1A1) expression, the enzyme believed to be the cause for PCB 126-induced oxidative stress. In addition, a significant inverse relationship was observed not only between dietary Se levels and PON1 mRNA and PON1 activity but also with TBARS levels in the liver, suggesting significant antioxidant protection from dietary Se. NAC lowered serum baseline TBARS levels in controls and increased serum PON1 activity but lowered liver PON1 activities in animals treated with 1 μmol/kg PCB 126, suggesting antioxidant activity by NAC primarily in serum. These results also show an unexpected predominantly inverse relationship between Se or NAC and PON1 during control and PCB 126 exposure conditions. These interactions should be further explored in the development of dietary protection regimens.  相似文献   

16.
The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.  相似文献   

17.
Flatfish species, such as the turbot (Scophthalmus maximus), are common targets for toxic effects, since they are exposed through the food chain (ingestion of contaminated preys) and are in direct contact with the waterborne contaminant and sediments. Furthermore, these fish species live in close proximity to interstitial water that frequently dissolves high amounts of contaminants, including metals. Despite this significant set of characteristics, the present knowledge concerning flatfish contamination and toxicity by metals is still scarce. To attain the objective of assessing the effects of metals on a flatfish species, S. maximus specimens were chronically exposed to lead, copper and zinc, at ecologically relevant concentrations, and biochemical (oxidative stress: catalase and glutathione S-transferases activities, and lipid peroxidation; neurotoxicity: cholinesterase activity) parameters were assessed on selected tissues (gills and liver). Copper had no significant effects on all tested parameters; lead was causative of significant increases in liver GSTs activities and also in lipoperoxidation of gill tissue; exposure to zinc caused a significant increase in catalase activity of gill tissue. None of the tested metals elicited noteworthy effects in terms of neurotoxicity. The obtained results showed that only the metal lead is of some environmental importance, since it was able to cause deleterious modifications of oxidative nature at relevant concentrations.  相似文献   

18.
The aim of the present study is the comparative examination of accumulation and detoxification of Cu and Hg in digestive gland and gills of mussels Mytilus galloprovincialis, using atomic absorption spectrophotometry and autometallography. Mussels were exposed to 0.08 mg L−1 Cu, 0.08 mg L−1 Hg, as well as to a mixture of 0.08 mg L−1 Hg and 0.08 mg L−1 Cu for 11 d. After the experimental exposure, animals were kept under laboratory conditions for a detoxification period of 7 d. An antagonistic effect of Cu against to Hg accumulation was noted in the digestive gland of mussels after the experimental exposure, as well as after the detoxification period, supporting the protective role of Cu against to Hg toxicity in this tissue. Digestive gland was suggested as a main organ for Hg accumulation and gills as a target position for Cu accumulation. Additionally, lower time was evaluated for Hg detoxification in the digestive gland and gills of mussels, in relation to those addressed for Cu detoxification in the same tissues. The evaluation of black silver deposits (BSD) extent performed in digestive gland and gills was suggested as a less sensitive approach, in relation to atomic absorption spectrophotometry (AAS), to indentify the concentration of heavy metals in tissues of mussels. The toxic effects of Hg, Cu and a mixture of them on lysosomal system of the digestive cells are also discussed.  相似文献   

19.
Following the development of urban and industrial centres petrochemical products have become a widespread class of contaminants. The aim of this study was to investigate the effects of petrochemical contamination in wild populations of mussels (Mytilus galloprovincialis) along the NW Atlantic coast of Portugal by applying antioxidant and energetic metabolism parameters as biomarkers. For that, mussels were collected at five sampling sites presenting different petrochemical contamination levels. To evaluate the mussels' antioxidant status, enzymatic activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione S-transferases, as well as glutathione redox status were evaluated in gills and digestive glands of mussels collected from the selected sites. Lipid peroxidation was determined in the same tissues to quantify cellular oxidative damage. Furthermore, to investigate how energetic processes may respond to these contaminants, the activity of NADP(+)-dependent isocitrate dehydrogenase was determined in mussels' digestive glands, and octopine dehydrogenase was determined in mussels' posterior adductor muscle. Furthermore, the concentrations of aliphatic hydrocarbons, unresolved complex mixture and polycyclic aromatic hydrocarbons (PAHs) were quantified in mussels' tissue, and abiotic parameters were quantified in water samples collected at each site. Several biomarkers showed statistically significant differences among sampling sites. The redundancy analysis (RDA) used to perform the integrated analysis of the data showed a clear separation of the sampling sites in three different assemblages, which are in agreement with the PAHs levels found in mussels tissues. In addition, the RDA indicated that some of the selected biomarkers may be influenced by abiotic parameters (e.g. salinity, pH, nitrates and ammonia). The approach selected for this study seems to be suitable for monitoring petrochemical contamination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号