首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substantive addition of antibiotic-contaminated manure to agricultural soil may lead to “persistent” residues of antibiotics and may affect soil health. Therefore, this study examines the effects of repeated manure treatments containing sulfadiazine (SDZ) and chlortetracycline (CTC) residues, both individually and combined, on the functional diversity and structure of soil microbial communities in the soils under laboratory conditions. The average well color development (AWCD), Simpson diversity index (1/D, dominant populations), Shannon-Wiener diversity index (H′, richness), and McIntosh diversity index (U, evenness) in the antibiotics-treated soils decreased in the first 60-day treatment and then gradually recovered or even exceeded the initial level in the unamended soils with increasing treatment frequency. A total of 11 specific bands in temperature gradient gel electrophoresis (TGGE) profiles were observed and sequence analyzed for five repeated treatments, and most of them belonged to the phyla Firmicutes, Actinobacteria, and Proteobacteria. These results indicate that repeated treatments of manure containing SDZ and CTC residues can alter soil microbial community structure, although they have a temporary suppression effect on soil microbial functional diversity.  相似文献   

2.
In this study, the effect of ciprofloxacin (CIP) on the catabolic diversity of soil microbial communities was evaluated. Soil samples were spiked with ciprofloxacin (0, 1, 5 and 50 mg?kg?1) and were incubated for 1, 3, 9, 22 and 40 days. Untreated controls received only water. The functional diversity of the microbial community studied was characterized using a catabolic response profile (CRP). Six substrate groups were tested: carbohydrates, amino acids, carboxylic acids, aromatic chemicals, alcohols and polymers. After 40 days, the CIP concentrations in the soil samples ranged from 25% to 58% of the initial concentrations. Soil respiratory responses to the individual substrates D-glucose, lactose, D-mannose, L-glutamic, Na-citrate, malic acid and inosine were inhibited at the high CIP concentrations (5 and 50 mg·kg?1) in the soils and were increased at the lowest CIP concentration (1 mg·kg?1). Soil respiration was inhibited at all of the CIP concentrations after the addition of D-galactose and glycerol. The CIP concentration and incubation time explained 45.3% of the variance of the catabolic responses. The CRP analysis clearly discriminated among the different CIP concentrations. The results suggest that CIP strongly affects the catabolic diversities of soil microbial communities and that its effect is more significant than that of incubation time.  相似文献   

3.
A pot trial was carried out to investigate the adverse effects of tetracycline (TC) on soil microbial communities, microbial activities, and the growth of ryegrass (Lolium perenne L). The results showed that the presence of TC significantly disturbed the structure of microbial communities and inhibited soil microbial activities in terms of urease, acid phosphatase and dehydrogenase (p < 0.05). Plant biomass was adversely influenced by TC, especially the roots with a reduction of 40% when compared with the control. Furthermore, TC decreased the assimilation of phosphorus by the plant although the concentration of phosphorus was increased by 20% due to decreased plant biomass. TC seemed to increase the concentration of dissolved organic carbon (by 20%) in soil. The findings implied that the agricultural use of animal manure or fishpond sediment containing considerable amounts of antibiotics may give rise to ecological risks.  相似文献   

4.
A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) in the establishment of Tetraclinis articulata and soil properties in a heavy metal-polluted soil. The treatments assayed were as follows: AM?+?0 % COW, AM?+?1 % COW, and AM?+?3 % COW. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96 and 60 %, respectively. These treatments trended to improve the soil properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni, and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided Glomus mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs because it promotes soil properties, a better performance of plants for supporting the stress in heavy metal-contaminated soils derived from the mining process, and also can be a good way for olive-mill waste disposal.  相似文献   

5.
Biodegradable chelant-enhanced phytoremediation offers an alternative treatment technique for metal contaminated soils, but most studies to date have addressed on phytoextraction efficiency rather than comprehensive understanding of the interactions among plant, soil microbes, and biodegradable chelants. In the present study, we investigated the impacts of biodegradable chelants, including nitrilotriacetate, S,S-ethylenediaminedisuccinic acid (EDDS), and citric acid on soil microbes, nitrogen transformation, and metal removal from contaminated soils. The EDDS addition to soil showed the strongest ability to promote the nitrogen cycling in soil, ryegrass tissue, and microbial metabolism in comparison with other chelants. Both bacterial community-level physiological profiles and soil mass specific heat rates demonstrated that soil microbial activity was inhibited after the EDDS application (between day 2 and 10), but this effect completely vanished on day 30, indicating the revitalization of microbial activity and community structure in the soil system. The results of quantitative real-time PCR revealed that the EDDS application stimulated denitrification in soil by increasing nitrite reductase genes, especially nirS. These new findings demonstrated that the nitrogen release capacity of biodegradable chelants plays an important role in accelerating nitrogen transformation, enhancing soil microbial structure and activity, and improving phytoextraction efficiency in contaminated soil.  相似文献   

6.

Agricultural pharmaceuticals are a major environmental concern because of their hazardous effects on human and wildlife. This study analyzed phospholipid ester-linked fatty acids (PLFAs) and quinones to investigate the effects of a steroid (17β-estradiol) and agricultural antibiotics (chlortetracycline and tylosin) on soil microbes in the laboratory. Two different types of soil were used: Sequatchie loam (0.8% organic matter) and LaDelle silt loam (9.2% organic matter). The soils were spiked with 17β-estradiol and antibiotics, alone or in combination. In Sequatchie loam, 17β-estradiol significantly increased the microbial biomass, especially the biomarkers for beta proteobacteria (16:1ω7c, 18:1ω7c, Cy17:0, and UQ-8). The coexistence of antibiotics decreased the stimulatory effect of 17β-estradiol on the microbial community. In LaDelle silt loam, there were no significant differences in total microbial biomass and their microbial community structure among the treatments. Overall, 17β-estradiol changed the microbial community of soil and the presence of antibiotics nullified the effect of 17β-estradiol. However, the effects of 17β-estradiol and antibiotics on soil microbes were sensitive to the soil properties, as seen in the LaDelle silt loam.  相似文献   

7.
Soil pollution caused by polycyclic aromatic hydrocarbons (PAHs) is threatening human health and environmental safety. Investigating the relative prevalence of different PAH-degrading genes in PAH-polluted soils and searching for potential bioindicators reflecting the impact of PAH pollution on microbial communities are useful for microbial monitoring, risk evaluation, and potential bioremediation of soils polluted by PAHs. In this study, three functional genes, pdo1, nah, and C12O, which might be involved in the degradation of PAHs from a coke factory, were investigated by real-time quantitative PCR (qPCR) and clone library approaches. The results showed that the pdo1 and C12O genes were more abundant than the nah gene in the soils. There was a significantly positive relationship between the nah or pdo1 gene abundances and PAH content, while there was no correlation between C12O gene abundance and PAH content. Analyses of clone libraries showed that all the pdo1 sequences were grouped into Mycobacterium, while all the nah sequences were classified into three groups: Pseudomonas, Comamonas, and Polaromonas. These results indicated that the abundances of nah and pdo1 genes were positively influenced by levels of PAHs in soil and could be potential microbial indicators reflecting the impact of soil PAH pollution and that Mycobacteria were one of the most prevalent PAHs degraders in these PAH-polluted soils. Principal component analysis (PCA) and correlation analyses between microbial parameters and environmental factors revealed that total carbon (TC), total nitrogen (TN), and dissolved organic carbon (DOC) had positive effects on the abundances of all PAH-degrading genes. It suggests that increasing TC, TN, and DOC inputs could be a useful way to remediate PAH-polluted soils.  相似文献   

8.
A rhizobox experiment was conducted to investigate degradation of decabromodiphenyl ether (BDE-209) in the rhizosphere of ryegrass and the influence of root colonization with an arbuscular mycorrhizal (AM) fungus. BDE-209 dissipation in soil varied with its proximity to the roots and was enhanced by AM inoculation. A negative correlation (P < 0.001, R2 = 0.66) was found between the residual BDE-209 concentration in soil and soil microbial biomass estimated as the total phospholipid fatty acids, suggesting a contribution of microbial degradation to BDE-209 dissipation. Twelve and twenty-four lower brominated PBDEs were detected in soil and plant samples, respectively, with a higher proportion of di- through hepta-BDE congeners in the plant tissues than in the soils, indicating the occurrence of BDE-209 debromination in the soil-plant system. AM inoculation increased the levels of lower brominated PBDEs in ryegrass. These results provide important information about the behavior of BDE-209 in the soil-plant system.  相似文献   

9.
Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata’s rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.  相似文献   

10.
In order to assess the suitability of sludge compost application for tree peony (Paeonia suffruticosa)–soil ecosystems, we determined soil microbial biomass C (Cmic), basal respiration (Rmic), enzyme activities, and tree peony growth parameters at 0–75% sludge compost amendment dosage. Soil Cmic, Rmic, Cmic as a percent of soil organic C, enzyme (invertase, urease, proteinase, phosphatase, polyphenoloxidase) activities, and plant height, flower diameter, and flower numbers per plant of tree peony significantly increased after sludge compost amendment; however, with the increasing sludge compost amendment dosage, a decreasing trend above 45% sludge compost amendment became apparent although soil organic C, total Kjeldahl N, and total P always increased with the sludge compost amendment. Soil metabolic quotient first showed a decreasing trend with the increasing sludge compost application in the range of 15–45%, and then an increasing trend from compost application of 45–75%, with the minimum found at compost application of 45%. As for the diseased plants, 50% of tree peony under the treatment without sludge compost amendment suffered from yellow leaf disease of tree peony, while no any disease was observed under the treatments with sludge compost application of 30–75%, which showed sludge compost application had significant suppressive effect on the yellow leaf disease of tree peony. This result convincingly demonstrated that ?45% sludge compost application dosage can take advantage of beneficial effect on tree peony growth and tree peony–soil ecosystems.  相似文献   

11.
Insecticides are widely sprayed in modern agriculture for ensuring the crop yield, which could also lead to contamination and insecticide residue in soils. Paichongding (IPP) is a novel neonicotinoid insecticide and was developed recently in China. Soil bacterial community, diversity, and community composition vary widely depending on environmental factors. As for now, little is known about bacterial species thriving, bacterial community diversity, and structure in IPP-spraying soils. In present study, IPP degradation in yellow loam and Huangshi soils was investigated, and bacterial communities and diversity were examined in soil without IPP spray and with IPP spray through pyrosequencing of 16S ribosomal RNA (rRNA) gene amplicons. The degradation ratio of IPP at 60 days after treatment (DAT) reached 51.22 and 34.01 % in yellow loam and Huangshi soil, respectively. A higher richness of operational taxonomic units (OTUs) was found in yellow loam soil (867 OTUs) and Huangshi soil (762 OTUs) without IPP spray while OUTs were relatively low in IPP-spraying soils. The community composition also differed both in phyla and genus level between these two environmental conditions. Proteobacteria, Firmicutes, Planctomycetes, Chloroflexi, Armatimonadetes, and Chlorobi were stimulated to increase after IPP application, while IPP inhibited the phyla of Bacteroidetes, Actinobacteria, and Acidobacteria.  相似文献   

12.
The effects of repeated applications of the fungicide triadimefon in agricultural soil on the microbial functional diversity of the soil and on the persistence of the fungicide in the soil were investigated under laboratory conditions. The degradation half-lives of triadimefon at the recommended dosage, simulated by a first-order kinetic model, were 23.90, 22.95, and 21.52 days for the first, second, and third applications, respectively. Throughout this study, no significant inhibition of the Shannon-Wiener index (H′) was observed. However, the Simpson index (1/D) and the McIntosh index (U) were obviously reduced (p ≤ 0.05) during the initial 3 days after the first triadimefon application and thereafter, gradually recovered to or exceeded the level of the control soil. A similar trend in variation but with a faster recovery in the 1/D and U was observed after the second and third triadimefon applications, respectively. Taken together, the above results indicate that the repeated application of triadimefon enhanced the degradation rate of the fungicide and the recovery rate of the soil microbial functional diversity. It is concluded that repeated triadimefon applications in soil have a transient or temporary inhibitory effect on soil microbial communities.  相似文献   

13.
We describe TNT's inhibition of RDX and HMX anaerobic degradation in contaminated soil containing indigenous microbial populations. Biodegradation of RDX or HMX alone was markedly faster than their degradation in a mixture with TNT, implying biodegradation inhibition by the latter. The delay caused by the presence of TNT continued even after its disappearance and was linked to the presence of its intermediate, tetranitroazoxytoluene. PCR–DGGE analysis of cultures derived from the soil indicated a clear reduction in microbial biomass and diversity with increasing TNT concentration. At high-TNT concentrations (30 and 90 mg/L), only a single band, related to Clostridium nitrophenolicum, was observed after 3 days of incubation. We propose that the mechanism of TNT inhibition involves a cytotoxic effect on the RDX- and HMX-degrading microbial population. TNT inhibition in the top active soil can therefore initiate rapid transport of RDX and HMX to the less active subsurface and groundwater.  相似文献   

14.
The accidents of aniline spill and explosion happened almost every year in China, whereas the toxic effect of aniline on soil microbial activity remained largely unexplored. In this study, isothermal microcalorimetric technique, glucose analysis, and soil enzyme assay techniques were employed to investigate the toxic effect of aniline on microbial activity in Chinese soil for the first time. Soil samples were treated with aniline from 0 to 2.5 mg/g soil to tie in with the fact of aniline spill. Results from microcalorimetric analysis showed that the introduction of aniline had a significant adverse effect on soil microbial activity at the exposure concentrations ≥0.4 mg/g soil (p?<?0.05) and ≥0.8 mg/g soil (p?<?0.01), and the activity was totally inhibited when the concentration increased to 2.5 mg/g soil. The glucose analysis indicated that aniline significantly decreased the soil microbial respiratory activity at the concentrations ≥0.8 mg/g soil (p?<?0.05) and ≥1.5 mg/g soil (p?<?0.01). Soil enzyme activities for β-glucosidase, urease, acid-phosphatase, and dehydrogenase revealed that aniline had a significant effect (p?<?0.05) on the nutrient cycling of C, N, and P as well as the oxidative capacity of soil microorganisms, respectively. All of these results showed an intensively toxic effect of aniline on soil microbial activity. The proposed methods can provide toxicological information of aniline to soil microbes from the metabolic and biochemical point of views which are consistent with and correlated to each other.  相似文献   

15.
The effect of aquatic vegetation (Spyrogira sp. and Zannichellia palustris), light exposure and water quality (secondary-treated wastewater vs. ultrapure water) on the removal efficiency of six antibiotics (sulfonamides and tetracyclines) is studied in laboratory-scale reactors. After 20 d of treatment, 3–59% of sulfonamides were eliminated in the reactors exposed to light. Removal was about 10% in unplanted reactors in darkness. The elimination of tetracycline (TC) and oxytetracycline (OTC) ranged between 83% and 97% in both planted and unplanted reactors. However, in dark unplanted reactors, OTC was largely removed (88%) while only 15% of TC was eliminated. These results suggest that TC was mainly removed by photodegradation whereas biodegradation or hydrolysis process seems to be significant processes for OTC. Sulfonamides were mainly eliminated by biodegradation or indirect photodegradation processes. Pseudo-first order kinetics removal rates ranged from 0.003 and 0.007 d?1 for Sulfamethazine and TC in the covered control reactors to 0.13 and 0.21 d?1 for TC and OTC in the uncovered control reactors, with half-lives from 3 to 350 d. A TC photodegradation product was tentatively identified in uncovered reactors. This study highlights the important role played by light exposure in the elimination of antibiotics in polishing ponds.  相似文献   

16.
The interaction between two autochthonous microorganisms (Brevibacillus brevis and Glomus mosseae) isolated from Cd amended soil increased plant growth, arbuscular mycorrhizal (AM) colonization and physiological characteristics of the AM infection (measured as SDH or ALP activities). The enhanced plant Cd tolerance after coinoculation with native microorganisms seemed to be a consequence of increased P and K acquisition and, simultaneously, of decreased concentration of Cd, Cr, Mn, Cu, Mo, Fe and Ni in plant tissue. Autochthonous microbial strains were more efficient for nutrient uptake, to immobilize metals and decrease their translocation to the shoot than reference G. mosseae (with or without bacteria). Indole acetic acid produced by B. brevis may be related to its ability for improving root growth, nodule production and AM fungal intra and extraradical development. Dehydrogenase, phosphatase and beta-glucosidase activities, indicative of microbial metabolism and soil fertility, were maximized by the coinoculation of autochthonous microorganisms in cadmium polluted conditions. As a consequence, the use of native microorganisms may result very efficient in bioremediation.  相似文献   

17.
A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg?kg?1, the available Cd in the soil after the application of 1–10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg?kg?1, the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg?kg?1 fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg?kg?1), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.  相似文献   

18.

Background, aim, and scope  

Linear alkylbenzene sulfonate (LAS) is the most used anionic surfactant in a worldwide scale and is considered a high-priority pollutant. LAS is regarded as a readily biodegradable product under aerobic conditions in aqueous media and is mostly removed in wastewater treatment plants, but an important fraction (20–25%) is immobilized in sewage sludge and persists under anoxic conditions. Due to the application of the sludge as a fertilizer, LAS reaches agricultural soil, and therefore, microbial toxicity tests have been widely used to evaluate the influence of LAS on soil microbial ecology. However, molecular-based community-level analyses have been seldom applied in studies regarding the effects of LAS on natural or engineered systems, and, to our knowledge, there are no reports of their use for such appraisals in agricultural soil. In this study, a microcosm system is used to evaluate the effects of a commercial mixture of LAS on the community structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria in an agricultural soil.  相似文献   

19.
This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels.  相似文献   

20.
Six antibiotics, tetracyclines (TCs), and quinolones (QNs) in farmland soils from four coastal cities in Fujian Province of China were investigated. Oxytetracycline was most frequently detected, followed by enrofloxacin, ciprofloxacin, chlorotetracycline, ofloxacin, and tetracycline, with maximum concentrations of 613.2, 637.3, 237.3, 2668.9, 205.7, and 189.8 μg kg?1, respectively. Samples from Putian City contained the highest maximum concentration of ∑TCs (3,064.2 μg kg?1), whereas those from Fuzhou City contained the highest maximum concentration of ∑QNs (897.8 μg kg?1). It is noteworthy that the ∑TCs and ∑QNs in 46.4 and 28.6 % of samples exceeded the ecotoxic effect trigger value (100 μg kg?1), respectively. The concentrations of these antibiotics and five tetracycline resistance genes in four soil plots at depth profiles were quantified thereafter. In most cases, both antibiotics and resistance genes decreased with the increase of depth. Some antibiotics can be detected at a depth of 60–80 cm where the abundance of tetO, tetM, and tetX reached up to 107 copies g?1. Additionally, the sum of all tet genes (normalized to 16S rRNA genes) correlated with ∑TCs significantly (r?=?0.676). Our results suggest that resistance determinants can migrate to deeper soil layers and would probably contaminate groundwater by vertical transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号