首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.

To investigate the effects of moist olive husks (MOH-residues) on soil respiration, microbial biomass, and enzymatic (o-diphenoloxidase, β-glucosidase, dehydrogenase and alkaline phosphatase) activities, a silty clay soil was incubated with 0 (control), 8 × 103 (D), 16 × 103 (2D) and 80 × 103 (10D) kg ha?1 of MOH-residues on a dry weight basis. Soil respiration and microbial biomass data indicated that the addition of MOH-residues strongly increased microbial activity proportionally to the amounts added. Data of qCO2 suggested that the respiration to biomass ratio of the microbial population was strongly modified by MOH-residues additions during the first 90 days of incubation. The qCO2 data suggested a low efficiency in energy yields from C oxidation during the first 2 months of soil incubation. qFDA seemed to be relatively unaffected for treatments D and 2D as compared to the control, but was significantly lowered by the application of 10D, showing the lowest hydrolytic activity of microbial biomass in this treatment up to 360 days of incubation.

o-Diphenoloxidase activity was delayed, and this delay was extended with the addition of larger quantities of MOH-residues. Alkaline phosphatase, β-glucosidase and dehydrogenase activities were in line with the findings on microbial biomass changes and activities. The biological and biochemical data suggest that the addition of a large quantity of MOH-residues (80 × 103 kg ha?1) strongly modifies the soil characteristics affecting the r- and K-strategist populations, and that these changes last for at least the 360 days of incubation. The data also suggest that application rates exceeding 16 × 103 kg ha?1 are not recommended until the agro-chemical and -physical functions of the soil are further studied.  相似文献   

2.
This investigation was undertaken to determine the impact of the insecticides Dursban 480 EC (with organophosphate compound chlorpyrifos as the active ingredient) and Talstar 10 EC (with pyrethroid bifenthrin as the active ingredient) on the respiration activity and microbial diversity in a sandy loam luvisol soil. The insecticides were applied in two doses: the maximum recommended dose for field application (15 mg kg?1 for Dursban 480 EC and 6 mg kg?1 for Talstar 10 EC) and a 100-fold higher dose for extrapolation of their effect. Bacterial and fungal genetic diversity was analysed in soil samples using PCR DGGE and the functional diversity (catabolic potential) was studied using BIOLOG EcoPlates at 1, 3, 7, 14, 28, 56 and 112 days after insecticide application. Five bacterial groups (α, β, γ proteobacteria, firmibacteria and actinomycetes) and five groups of fungi or fungus-like microorganisms (Ascomycota, Basidiomycota, Chytridiomycota, Oomycota and Zygomycota) were analysed using specific primer sets. This approach provides high resolution of the analysis covering majority of microorganisms in the soil. Only the high-dose Dursban 480 EC significantly changed the community of microorganisms. We observed its negative effect on α- and γ-proteobacteria, as the number of OTUs (operational taxonomic units) decreased until the end of incubation. In the β-proteobacteria group, initial increase of OTUs was followed by strong decrease. Diversity in the firmibacteria, actinomycetes and Zygomycota groups was minimally disturbed by the insecticide application. Dursban 480 EC, however, both positively and negatively affected certain species. Among negatively affected species Sphingomonas, Flavobacterium or Penicillium were detected, but Achromobacter, Luteibacter or Aspergillus were supported by applied insecticide. The analysis of BIOLOG plates using AWCD values indicated a significant increase in metabolic potential of microorganisms in the soil after the high-dose Dursban application. Analysis of respiration demonstrated high microbial activity after insecticide treatments; thus, microbial degradation was relatively fast. The half-life of the active insecticide compounds were estimated within the range of 25 to 27 days for Talstar and 6 to 11 days for Dursban and higher doses stimulated degradation. The recommended dose levels of both insecticides can be considered as safe for microbial community in the soil.  相似文献   

3.
Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.  相似文献   

4.
Liao M  Chen CL  Zeng LS  Huang CY 《Chemosphere》2007,66(7):1197-1205
A greenhouse pot experiment was conducted to evaluate the impact of different concentrations of lead acetate on soil microbial biomass and community structure during growth of Chinese cabbage (Brassica chinensis) in two different soils. The field soils were used for a small pot, short-term 60-day growth chamber study. The soils were amended with different Pb concentrations, ranging from 0 to 900mgkg(-1) soil. The experimental design was a 2 soilx2 vegetation/non-vegetationx6 treatments (Pb)x3 replicate factorial experiment. At 60 days the study was terminated and soils were analyzed for microbial parameters, namely, microbial biomass, basal respiration and PLFAs. The results indicated that the application of Pb at lower concentrations (100 and 300mgkg(-1)) as lead acetate resulted in a slight increase in soil microbial biomass, whereas Pb concentrations >500mgkg(-1) caused an immediate gradual significant decline in biomass. However, the degree of impact on soil microbial biomass and basal respiration by Pb was related to management (plant vegetation) or the contents of clay and organic matter in soils. The profiles of 21 phospholipid fatty acids (PLFAs) were used to assess whether observed changes in functional microbial parameters were accompanied by changes in the composition of the microbial communities after Pb application at 0, 300 and 900mg Pbkg(-1) soil. The results of principal component analyses (PCA) indicated that there were significant increases in fungi biomarkers of 18:3omega6c, 18:1omega9c and a decrease in cy17:0, which is an indicator of gram-negative bacteria for the high levels of Pb treatments In a word, soil microbial biomass and community structure, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-plant system. However, further studies will be needed to better understand how these changes in microbial community structure might actually impact soil microbial community function.  相似文献   

5.
This study used the enzymes extracted from an atrazine-degrading strain, Arthrobacter sp. DNS10, which had been immobilized by sodium alginate to rehabilitate atrazine-polluted soil. Meanwhile, a range of biological indices were selected to assess the ecological health of contaminated soils and the ecological security of this bioremediation method. The results showed that there was no atrazine detected in soil samples after 28 days in EN?+?AT (the soil containing atrazine and immobilized enzyme) treatment. However, the residual atrazine concentration of the sample in AT (the soil containing atrazine only) treatment was about 5.02?±?0.93 mg?kg?1. These results suggest that the immobilized enzyme exhibits an excellent ability in atrazine degradation. Furthermore, the immobilized enzyme could relieve soil microbial biomass carbon and soil microbial respiration intensity to 772.33?±?34.93 mg?C?kg?1 and 5.01?±?0.17 mg?CO2?g?1?soil?h?1, respectively. The results of the polymerase chain reaction–degeneration gradient gel electrophoresis experiment indicated that the immobilized enzyme also could make the Shannon–Wiener index and evenness index of the soil sample increase from 1.02 and 0.74 to 1.51 and 0.84, respectively. These results indicated that the immobilized enzymes not only could relieve the impact from atrazine on the soil, but also revealed that the immobilized enzymes did no significant harm on the soil ecological health.  相似文献   

6.
The carcinogenic and toxic ptaquiloside (PTA) is a major secondary metabolite in Bracken fern (Pteridium aquilinum (L.) Kuhn) and was hypothesized to influence microbial communities in soil below Bracken stands. Soil and Bracken tissue were sampled at field sites in Denmark (DK) and New Zealand (NZ). PTA contents of 2.1 +/- 0.5 mg g(-1) and 37.0 +/- 8.7 mg g(-1) tissue were measured in Bracken fronds from DK and NZ, respectively. In the two soils the PTA levels were similar (0-5 microg g(-1) soil); a decrease with depth could be discerned in the deeper B and C horizons of the DK soil (weak acid sandy Spodosol), but not in the NZ soil (weak acid loamy Entisol). In the DK soil PTA turnover was predominantly due to microbial degradation (biodegradation); chemical hydrolysis was occurring mainly in the uppermost A horizon where pH was very low (3.4). Microbial activity (basal respiration) and growth ([3H]leucine incorporation assay) increased after PTA exposure, indicating that the Bracken toxin served as a C substrate for the organotrophic microorganisms. On the other hand, there was no apparent impact of PTA on community size as measured by substrate-induced respiration or composition as indicated by community-level physiological profiles. Our results demonstrate that PTA stimulates microbial activity and that microorganisms play a predominant role for rapid PTA degradation in Bracken-impacted soils.  相似文献   

7.
We studied the behaviour of oxyfluorfen herbicide at a rate of 4 l ha?1 on biological properties of a Calcaric Regosol amended with two edaphic biostimulants/biofertilizers (SS, derived from sewage sludge; and CF, derived from chicken feathers). Oxyfluorfen was surface broadcast on 11 March 2013. Two days after application of oxyfluorfen to soil, both biostimulants/biofertilizers (BS) were also applied to the soil. An unamended soil without oxyfluorfen was used as control. For 2, 4, 7, 9, 20, 30, 60, 90 and 120 days of the application of herbicide to the soil and for each treatment, the soil dehydrogenase, urease, β-glucosidase and phosphatase activities were measured. For 2, 7, 30 and 120 days of the application of herbicide to the soil and for each treatment, soil microbial community was determined. The application of both BS to soil without the herbicide increased the enzymatic activities and soil biodiversity, mainly at 7 days of beginning the experiment. However, this stimulation was higher in the soil amended with SS than for CF. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly, the low-molecular-weight protein content easily assimilated by soil microorganisms is responsible for less inhibition of these soil biological properties.  相似文献   

8.
A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg?kg?1, the available Cd in the soil after the application of 1–10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg?kg?1, the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg?kg?1 fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg?kg?1), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.  相似文献   

9.
The aim of this study was to evaluate the soil microbial characteristics in historically heavy-metal polluted soil, which was also affected by organic co-contaminants, 2,4-dichlorophenol or pentachlorophenol, which often occur due to the conventional use of pesticides. It was observed that the normalized microbial biomass (microbial biomass per unit soil organic C) of the contaminated soil was very low, less than 1% in both non-planted and ryegrass planted soil, and showed a decreasing trend with the treatment of organic co-contaminants. The microbial biomass and substrate-induced respiration (SIR) in the ryegrass planted soil were much larger, as compared with the non-planted soil with or without organic pollutants. The different resistant bacterial community and its physiological diversity in the rhizosphere further suggested that the effect of vegetation on microbial activity was not just a general increase in the mass or activity of pre-existing microorganisms, but rather acted selectively on microbial growth so that the relative abundance of different microbial groups in soil was changed. In sum, high concentrations of organic co-contaminants, especially pentachlorophenol (PCP), could strengthen the deterioration of microbial ecology. The adverse effect of heavy metal-organic pollutants on the soil microbial biomass and activity might be the reason for the slow degradation of PCP that has high chlorinated and high toxicity. Vegetation might be the efficient way to assist in improving and restoring the utilization of agricultural ecosystems. The beneficial microbial effect of vegetation could cause the rapid dissipation of 2,4-dichlorophenol (2,4-DCP) that has less chlorinated and less toxicity in the planted soils.  相似文献   

10.
In this study, the effect of ciprofloxacin (CIP) on the catabolic diversity of soil microbial communities was evaluated. Soil samples were spiked with ciprofloxacin (0, 1, 5 and 50 mg?kg?1) and were incubated for 1, 3, 9, 22 and 40 days. Untreated controls received only water. The functional diversity of the microbial community studied was characterized using a catabolic response profile (CRP). Six substrate groups were tested: carbohydrates, amino acids, carboxylic acids, aromatic chemicals, alcohols and polymers. After 40 days, the CIP concentrations in the soil samples ranged from 25% to 58% of the initial concentrations. Soil respiratory responses to the individual substrates D-glucose, lactose, D-mannose, L-glutamic, Na-citrate, malic acid and inosine were inhibited at the high CIP concentrations (5 and 50 mg·kg?1) in the soils and were increased at the lowest CIP concentration (1 mg·kg?1). Soil respiration was inhibited at all of the CIP concentrations after the addition of D-galactose and glycerol. The CIP concentration and incubation time explained 45.3% of the variance of the catabolic responses. The CRP analysis clearly discriminated among the different CIP concentrations. The results suggest that CIP strongly affects the catabolic diversities of soil microbial communities and that its effect is more significant than that of incubation time.  相似文献   

11.
The aim of this study was to evaluate the soil microbial characteristics in historically heavy-metal polluted soil, which was also affected by organic co-contaminants, 2,4-dichlorophenol or pentachlorophenol, which often occur due to the conventional use of pesticides. It was observed that the normalized microbial biomass (microbial biomass per unit soil organic C) of the contaminated soil was very low, less than 1% in both non-planted and ryegrass planted soil, and showed a decreasing trend with the treatment of organic co-contaminants. The microbial biomass and substrate-induced respiration (SIR) in the ryegrass planted soil were much larger, as compared with the non-planted soil with or without organic pollutants. The different resistant bacterial community and its physiological diversity in the rhizosphere further suggested that the effect of vegetation on microbial activity was not just a general increase in the mass or activity of pre-existing microorganisms, but rather acted selectively on microbial growth so that the relative abundance of different microbial groups in soil was changed. In sum, high concentrations of organic co-contaminants, especially pentachlorophenol (PCP), could strengthen the deterioration of microbial ecology. The adverse effect of heavy metal-organic pollutants on the soil microbial biomass and activity might be the reason for the slow degradation of PCP that has high chlorinated and high toxicity. Vegetation might be the efficient way to assist in improving and restoring the utilization of agricultural ecosystems. The beneficial microbial effect of vegetation could cause the rapid dissipation of 2,4-dichlorophenol (2,4-DCP) that has less chlorinated and less toxicity in the planted soils.  相似文献   

12.
Acetochlor is a widely used herbicide in maize fields; however, the ecological risk of its residue in the soil–plant system remains unknown. We investigated the dissipation dynamics of field dose acetochlor and clarified its impact on microbial biomass and community structure both in the rhizosphere and bulk soil over 1 month after its application. Soil microbial parameters such as quantities of culturable bacteria and fungi represented by colony-forming units, soil microbial biomass carbon (SMBC), and phospholipid fatty acids (PLFAs) were determined across different sampling times. The results showed that the dissipation half-lives of acetochlor were, respectively, 2.8 and 3.4 days in the rhizosphere and bulk soil, and 0.02–0.07 μg/g residual acetochlor could be detected in the soil 40 days after its application. Compared to the bulk soil, microbial communities in the rhizosphere soil were inclined to be affected by the application of acetochlor: SMBC content and bacterial growth were most likely to be increased; however, fungal growth was prone to be inhibited. The principal component analysis of PLFAs, as well as the comparisons of fungi/bacteria and cy17:0/C16:1ω9c ratios between different treatments over sampling time, revealed that the soil microbial community composition was significantly affected by acetochlor at its early application stage (at day 15); thereafter, the effects of acetochlor were attenuated or even could not be detected. Our results suggested that residual acetochlor did not confer a long-term impairment on viable bacterial groups in the rhizosphere and bulk soil.  相似文献   

13.
The purpose of this work was to investigate the effects of spreading olive oil mill wastewater (OMWW) on soil biochemical parameters and olive production in an organically managed olive orchard. The experiment was carried out with three different doses of OMWW (80, 160 and 500 m3 ha?1) and a control (untreated soil). Three samplings were done at 10, 30 and 90 days after the administration of the byproduct. OMWW application differentially modified the biochemical properties of the soil analyzed. Organic matter, organic carbon, total nitrogen and extractable phosphorus soil contents increased proportionally with each increasing dose. The values of these parameters decreased gradually with time. Total microbial activity was altered and the OMWW 500 m3 ha?1 treatment proved to be the most active when compared with the other applied doses. OMWW agricultural application also modified the structure of soil microbial communities, particularly affecting Gram positive and negative bacteria, while fungal biomass did not show consistent changes. Although there was a salinity increase in the treated soil, especially at the highest dose, the productive parameters analyzed (fruit and oil tree?1) were not affected. In light of the obtained results, we consider that low dose of OMWW could be considered an alternative farming practice for semiarid regions.  相似文献   

14.
The objective of this study was to develop a bioremediation strategy for cadmium (Cd) and carbendazim co-contaminated soil using a hyperaccumulator plant (Sedum alfredii) combined with carbendazim-degrading bacterial strains (Bacillus subtilis, Paracoccus sp., Flavobacterium and Pseudomonas sp.). A pot experiment was conducted under greenhouse conditions for 180 days with S. alfredii and/or carbendazim-degrading strains grown in soil artificially polluted with two levels of contaminants (low level, 1 mg kg?1 Cd and 21 mg kg?1 carbendazim; high level, 6 mg kg?1 Cd and 117 mg kg?1 carbendazim). Cd removal efficiencies were 32.3–35.1 % and 7.8–8.2 % for the low and high contaminant level, respectively. Inoculation with carbendazim-degrading bacterial strains significantly (P?<?0.05) increased Cd removal efficiencies at the low level. The carbendazim removal efficiencies increased by 32.1–42.5 % by the association of S. alfredii with carbendazim-degrading bacterial strains, as compared to control, regardless of contaminant level. Cultivation with S. alfredii and inoculation of carbendazim-degrading bacterial strains increased soil microbial biomass, dehydrogenase activities and microbial diversities by 46.2–121.3 %, 64.2–143.4 %, and 2.4–24.7 %, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that S. alfredii stimulated the activities of Flavobacteria and Bradyrhizobiaceae. The association of S. alfredii with carbendazim-degrading bacterial strains enhanced the degradation of carbendazim by changing microbial activity and community structure in the soil. The results demonstrated that association of S. alfredii with carbendazim-degrading bacterial strains is promising for remediation of Cd and carbendazim co-contaminated soil.  相似文献   

15.
Bensulfuron toxicity on soil microbes was evaluated by the methods used in a previous study on cinosulfuron; the effects of the two sulfonylureas were compared. Cinosulfuron and bensulfuron, at the normal field application rate and 100 times higher, had no effect on the total number of bacteria and nitrifiers, or on the respiration activity in the soil, but they did decrease the nitrification activity. In vitro toxicity tests carried out on representative soil microbial strains using bensulfuron at 50 mg l?1 showed some inhibition of three of the 17 bacterial strains and strong inhibition of almost all the 12 fungal strains; cinosulfuron had had no effect on any of these strains in the previous study. It is concluded that, compared with cinosulfuron, bensulfuron is potentially more toxic on soil heterotrophic microorganisms, but only at very high concentrations that are nearly impossible to reach with the usual agricultural use of the herbicides. However, autotrophic nitrifiers were more sensitive to both sulfonylureas than the other microorganisms.  相似文献   

16.
Our aim was to test the effects of simulated acid rain (SAR) at different pHs, when applied to fertilized and unfertilized soils, on the leaching of soil cations (K, Ca, Mg, Na) and Al. Their effects on soil pH, exchangeable H+ and Al3+ and microbial community structure were also determined. A Paleudalfs soil was incubated for 30 days, with and without an initial application of urea (200 mg N kg?1soil) as nitrogen (N) fertilizer. The soil was held in columns and leached with SAR at three pH levels. Six treatments were tested: SAR of pH 2.5, 4.0 and 5.6 leaching on unfertilized soil (T1, T2 and T3), and on soils fertilized with urea (T4, T5 and T6). Increasing acid inputs proportionally increased cation leaching in both unfertilized and fertilized soils. Urea application increased the initial Ca and Mg leaching, but had no effect on the total concentrations of Ca, Mg and K leached. There was no significant difference for the amount of Na leached between the different treatments. The SAR pH and urea application had significant effects on soil pH, exchangeable H+ and Al3+. Urea application, SAR treated with various pH, and the interactions between them all had significant impacts on total phospholipid fatty acids (PLFAs). The highest concentration of total PLFAs occurred in fertilized soils with SAR pH5.6 and the lowest in soils leached with the lowest SAR pH. Soils pretreated with urea then leached with SARs of pH 4.0 and 5.6 had larger total PLFA concentrations than soil without urea. Bacterial, fungal, actinomycete, Gram-negative and Gram-positive bacterial PLFAs had generally similar trends to total PLFAs.  相似文献   

17.
Natural steroidal estrogens, such as 17 β-estradiol (E2), as well as antimicrobials such as doxycycline and norfloxacin, are excreted by humans and hence detected in sewage sludge and biosolid. The disposal of human waste products on agricultural land results in estrogens and antibiotics being detected as mixtures in soils. The objective of this study was to examine microbial respiration and E2 mineralization in sewage sludge, biosolid, and soil in the presence and the absence of doxycycline and norfloxacin. The antimicrobials were applied to the media either alone or in combination at total rates of 4 and 40 mg kg?1, with the 4 mg kg?1 rate being an environmentally relevant concentration. The calculated time that half of the applied E2 was mineralized ranged from 294 to 418 days in sewage sludge, from 721 to 869 days in soil, and from 2,258 to 14,146 days in biosolid. E2 mineralization followed first-order and the presence of antimicrobials had no significant effect on mineralization half-lives, except for some antimicrobial applications to the human waste products. At 189 day, total E2 mineralization was significantly greater in sewage sludge (38 ±0.7%) > soil (23 ±0.7%) > biosolid (3 ±0.7%), while total respiration was significantly greater in biosolid (1,258 mg CO2) > sewage sludge (253 mg CO2) ≥ soil (131 mg CO2). Strong sorption of E2 to the organic fraction in biosolid may have resulted in reduced E2 mineralization despite the high microbial activity in this media. Total E2 mineralization at 189 day was not significantly influenced by the presence of doxycycline and/or norfloxacin in the media. Antimicrobial additions also did not significantly influence total respiration in media, except that total CO2 respiration at 189 day was significantly greater for biosolid with 40 mg kg?1 doxycycline added, relative to biosolid without antimicrobials. We conclude that it is unlikely for doxycycline and norfloxacin, or their mixtures, to have a significant effect on E2 mineralization in human waste products and soil. However, the potential for E2 to be persistent in biosolids, with and without the presence of antimicrobials, is posing a challenge for biosolid disposal to agricultural lands.  相似文献   

18.
Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30 mg Cd kg?1 was evaluated. Bacterial inoculation increased plant biomass up to 63 % and led to a decrease of up to 81 % in Cd shoot levels (4–88 mg Cd kg?1) and to an increase of up to 186 % in accumulation in the roots (52–134 mg Cd kg?1). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.  相似文献   

19.
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g?1) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 24 factorial experimental design. The Trametes maximaPaecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein?1, H2O2 = 6.2 mg L?1) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein?1, H2O2 = 4.0 mg L?1). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.  相似文献   

20.
Aquaculture farmers commonly add tetracycline to fish feed or to their ponds to prevent or treat bacterial infections in their crops. To assess the short-term effect of tetracycline (TET) and of one of its reversible epimers, 4-epitetracycline (ETC), on the function and structure of a sediment microbial community from a tropical tilapia farm, we contrasted community-level physiological profiles (CLPP) and phospholipid fatty acid profiles (PLFA) obtained from microcosms exposed for 12 days to 5, 10, 50, or 75 mg kg?1of these antibiotics. Notwithstanding that the concentration of the antibiotics during the experiment decreased between 13–100% (TET) or 16–61% (ETC), both compounds provoked opposing metabolic responses that did not revert. TET displayed a tendency to inhibit respiration at concentrations < 50 mg kg?1, whereas ETC showed the opposite effect. As revealed by the finding of the fatty acids 11:0 iso 3OH, 16:1w6c, and 18:1w6c, the sediment analyzed was predominantly colonized by Gram-negative bacteria. A marked decrease in fatty acid diversity accompanied the aforementioned metabolic responses, with TET concentrations > 50 mg kg?1leading to an enrichment of yeast and fungal biomarkers and both antibiotics at concentrations < 10 mg kg?1selecting for microorganisms with 11:0 iso 3OH. In agreement with CLPP data, differences between the PLFA profiles of control and treated microcosms were more pronounced for TET than for ETC. We conclude that high, yet field-relevant, concentrations of TET and ETC have the potential to modify the composition, and to a lesser extent, the functioning of a sediment microbial community. This study highlights the importance of considering antibiotic degradation products in ecotoxicological research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号