首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Exposure to specific metallic compounds can cause severe deleterious modifications in organisms. Fishes are particularly prone to toxic effects from exposure to metallic compounds via their environment. Species that inhabit estuaries or freshwater environments can be chronically affected by persistent exposure to a large number of metallic compounds, particularly those released by industrial activities. In this study, we exposed yellow eels (European eel, Anguilla anguilla) for 28 days to environmentally relevant concentrations of four specific metals; lead (300, 600, and 1,200 μg/l), copper (40, 120, and 360 μg/l), zinc (30, 60, and 120 μg/l) and cadmium (50, 150, and 450 μg/l). The selected endpoints to assess the toxicological effects were neurotransmission (cholinesterasic activity in nervous tissue), antioxidant defense, and phase II metabolism (glutathione-S-transferase [GST] activity, in both gills and liver tissues), and peroxidative damage. The results showed an overall lack of effects on acetylcholinesterase for all tested metals. Lead, copper, and cadmium exposure caused a significant, dose-dependent, increase in GST activity in gill tissue. However, liver GST only significantly increased following zinc exposure. No statistically significant effects were observed for the thiobarbituric acid reactive substances assay, indicating the absence of peroxidative damage. These findings suggest that, despite the occurrence of an oxidative-based response after exposure to lead, copper, and cadmium, this had no consequence in terms of peroxidative membrane damage; furthermore, cholinergic neurotoxicity caused by lead, copper, and cadmium did not occur. The implications of these results are further discussed.  相似文献   

2.
Although trace concentrations of ibuprofen (IBP) have been detected in diverse water bodies, there is currently insufficient information on the potentially deleterious effects of this xenobiotic. The present study aimed to determine whether IBP induces oxidative stress in brain, liver, gill, and blood of the common carp Cyprinus carpio. To this end, the median lethal concentration at 96 h (96-h LC50) was determined and the lowest observed adverse effect level was established. Carp were exposed to the latter concentration (17.6 mg L?1) for 12, 24, 48, 72, and 96 h, and the following biomarkers were evaluated: lipid peroxidation (LPX) and activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Results indicated that LPX and antioxidant enzymes’ activity increased significantly (p?<?0.05) with respect to the control group in liver, gill, and blood, while no significant differences occurred in brain. In conclusion, IBP induced oxidative stress on C. carpio, the liver being the organ most affected by this damage.  相似文献   

3.
Mercury concentrations in three flatfish species - flounder (Platichtys flesus), plaice (Pleuronectes platessa), and Baltic turbot (Scophthalmus maximus), netted in the southern Baltic Sea were assessed and compared to concentrations of this metal in sediments, sea water, and flatfish food - bivalve Macoma balthica, isopod Saduria entomon, and sprat (Sprattus sprattus). Collected simultaneously with flatfish in 2009 and 2010. Different concentrations of mercury depending on species, tissue or organ, sex, individual length, kind of food, and region were determined. The muscle tissues of turbot had the highest concentrations of the metal. The bioaccumulation (BF) and biomagnification (BMF) factors has been counted showing that the muscle tissues of turbot have maximum affinity for mercury, and thus best reflected the metal contamination of the Baltic Sea environment. The data suggest that the common Baltic turbot (S. maximus) is an important model species, suitable and cost-effective to biomonitor environmental mercury pollution for ecological research.  相似文献   

4.
The effects of permethrin (PER) on a panel of antoxidant enzymes; superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and indices of protein oxidation status (carbonylation and free thiols) were determined in digestive gland and gills of the clam Ruditapes decussatus. Animals were exposed to 100 ppb PER for 2 days. These enzyme activities increased significantly in digestive gland (p?<?0.05) after PER treatment and oxidative modification of proteins was detected in both gill and digestive gland extracts using redox proteomics. PER exposure significantly reduced the amount of protein free thiol groups in digestive gland rather than in gill, when compared to controls. Conversely, digestive gland showed significantly higher levels of carbonylated proteins than gill after PER exposure. Some proteins were successfully identified by mass spectrometry of tryptic peptides. Our data suggest that digestive gland of R. decussatus can be used as a model tissue for investigating environmental risk of PER contamination.  相似文献   

5.
The aim of the present study was to assess the effect of the exposure of Leporinus obtusidens (Piava) to zinc and copper on catalase activity in the liver, delta-aminolevulinate dehidratase (delta-ALA-D) activity in liver, muscle, brain and kidney, and thiobarbituric reactive species (TBARS) in brain, muscle and liver. In addition, hematological parameters were measured in blood. The fish were exposed to 10% and 20% of the derived LC(50) values, 2.3 and 4.6 mg Zn l(-1) and 0.02 and 0.04 mg Cu l(-1), and sampled on days 30 and 45. Exposure to Zn(II) and Cu(II) decreased hematological parameters and also delta-ALA-D activity mainly in liver and kidney at all concentrations tested. Liver catalase activity increased after zinc or copper exposure at all concentrations and exposure times tested. Thiobarbituric reactive substances (TBARS) increased in the brain and liver of the fish exposed to zinc(II) for 45 days at both metal concentrations. In muscle, zinc(II) increased TBARS production at both exposure times and concentrations tested. Copper(II) exposure reduced the TBARS levels in liver at both concentrations and times tested. In brain, there was a decrease in TBARS levels only after 45 days of exposure. In muscle, this decrease was observed after 30 days of exposure at both concentrations. Although zinc and copper are required as microelements in the cells, our results showed that the sublethal concentrations of these metals can change biochemical parameters which may alter normal cellular function. These results pointed out the differential sensitivity of fish tissues to essential, but also toxic and environmentally relevant metals. The alterations of distinct biochemical parameters in fish tissues certainly contribute to the toxicity of Zn and Cu, and are of importance for an area that has been growing and has still been poorly explored in the literature.  相似文献   

6.
Fossil fuels such as diesel are being gradually replaced by biodiesel, a renewable energy source, cheaper and less polluting. However, little is known about the toxic effects of this new energy source on aquatic organisms. Thus, we evaluated biochemical biomarkers related to oxidative stress in Nile tilapia (Oreochromis niloticus) after two and seven exposure days to diesel and pure biodiesel (B100) and blends B5 and B20 at concentrations of 0.01 and 0.1 mL L−1. The hepatic ethoxyresorufin-O-deethylase activity was highly induced in all groups, except for those animals exposed to B100. There was an increase in lipid peroxidation in liver and gills in the group exposed to the higher concentration of B5. All treatments caused a significant increase in the levels of 1-hydroxypyrene excreted in the bile after 2 and 7 d, except for those fish exposed to B100. The hepatic glutathione-S-transferase increased after 7 d in animals exposed to the higher concentration of diesel and in the gill of fish exposed to the higher concentration of pure diesel and B5, but decreased for the two tested concentrations of B100. Superoxide dismutase, catalase and glutathione peroxidase also presented significant changes according to the treatments for all groups, including B100. Biodiesel B20 in the conditions tested had fewer adverse effects than diesel and B5 for the Nile tilapia, and can be suggested as a less harmful fuel in substitution to diesel. However, even B100 could activate biochemical responses in fish, at the experimental conditions tested, indicating that this fuel can also represent a risk to the aquatic biota.  相似文献   

7.
Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7 d to 0.01 mL L−1 and 0.1 mL L−1 of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2′-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota.  相似文献   

8.
Nunes B  Carvalho F  Guilhermino L 《Chemosphere》2004,57(11):1581-1589
The objective of this study was to investigate both acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH) and catalase (CAT) of the mosquitofish (Gambusia holbrooki). AChE, commonly used as a biomarker of neurotoxicity, was determined in the total head. LDH, an important enzyme of anaerobic metabolism, was quantified in dorsal muscle, and CAT, enzyme which has been used as indicative parameter of peroxisome proliferation, was determined in the liver. Furthermore, alterations of body and liver weight were also determined, through the calculation of the ratios final body weight/initial body weight, liver weight/final body weight, liver weight/gills weight and liver weight/head weight. Acute exposure of G. holbrooki to both clofibrate and clofibric acid induced a decrease in liver CAT activity, an increase in muscle LDH activity, while no effects were observed on AChE activity. However, chronic exposure did not alter significantly the enzymatic activities, suggesting reduced or null effects over these pathways, relative to effects reported in other species. No effects were observed for the calculated ratios, except a significant weight reduction for males chronically exposed to clofibrate.  相似文献   

9.
Li M  Hu C  Zhu Q  Chen L  Kong Z  Liu Z 《Chemosphere》2006,62(4):565-572
The metal-induced lipid peroxidation and response of antioxidative enzymes have been investigated in the marine microalga Pavlova viridis to understand the mechanisms of metal resistance in algal cells. We have analyzed superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) activities and glutathione (GSH) contents in microalgal cells grown at different concentrations of copper and zinc. In response to each metal, lipid peroxidation was enhanced with the increase of concentrations, as an indication of the oxidative damage caused by metal concentration assayed in the microalgae cells. Exposure of P. viridis to the two metals caused changes in enzyme activities in a different manner, depending on the metal assayed: after copper treatments, total SOD activity was enhanced, while it was reduced after zinc exposure. Copper and zinc stimulated the activities of CAT and GSH whereas GPX showed a remarkable increase in activity in response to copper treatments and decrease after zinc treatments. These results suggest that an activation of some antioxidant enzymes was enhanced to counteract the oxidative stress induced by the two metals.  相似文献   

10.
Santos TG  Martinez CB 《Chemosphere》2012,89(9):1118-1125
The effects of Atrazine, an herbicide used worldwide and considered as a potential contaminant in aquatic environments, were assessed on the Neotropical fish Prochilodus lineatus acutely (24 and 48 h) exposed to 2 or 10 μg L−1 of atrazine by using a set of biochemical and genetic biomarkers. The following parameters were measured in the liver: activity of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione S transferase (GST), antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), content of reduced glutathione (GSH), generation of reactive oxygen species (ROS) and occurrence of lipid peroxidation (LPO); in brain and muscle the activity of acetylcholinesterase (AChE) and DNA damage (comet assay) on erythrocytes, gills and liver cells. A general decreasing trend on the biotransformation and antioxidant enzymes was observed in the liver of P. lineatus exposed to atrazine; except for GR, all the other antioxidant enzymes (SOD, CAT and GPx) and biotransformation enzymes (EROD and GST) showed inhibited activity. Changes in muscle or brain AChE were not detected. DNA damage was observed in the different cell types of fish exposed to the herbicide, and it was probably not from oxidative origin, since no increase in ROS generation and LPO was detected in the liver. These results show that atrazine behaves as enzyme inhibitor, impairing hepatic metabolism, and produces genotoxic damage to different cell types of P. lineatus.  相似文献   

11.
The purpose of this study was to explore the effects of soil contamination by selected metals (cadmium, copper, nickel, lead or zinc) on the antioxidant response of Vicia faba plants. The levels of the antioxidants: glutathione, proline, non-protein thiols, as well as guaiacol peroxidase and catalase activities were measured in the upperparts of plants. Additionally, the potential bioavailability of metals in the soil and their concentrations in V. faba plants were compared. Treatment with metal caused the problem of an elevation in its bioavailability in soil and its concentration in leaves and stems. The most serious problems seemed to be metal elevations in soil, especially Zn and Ni as well as in the aerial parts of V. faba plants. The antioxidant responses appeared to be metal specific. The elevation of guaiacol peroxidase activity in leaves and stems as well as the proline in leaves was the only more general reaction to metal exposure. Upon analysis of the effects of soil metal contamination on V. faba plants, we recommend the use of some measurements such as guaiacol peroxidase activity and proline level as useful tools in biological monitoring.  相似文献   

12.
Estuarine areas represent complex and highly changing environments at the interface between freshwater and marine aquatic ecosystems. Therefore, the aquatic organisms living in estuaries have to face highly variable environmental conditions. The aim of this work was to study the influence of environmental changes from either natural or anthropogenic origins on the physiological responses of Mytilus edulis. Mussels were collected in the Vilaine estuary during early summer because this season represents a critical period of active reproduction in mussels and of increased anthropogenic inputs from agricultural and boating activities into the estuary. The physiological status of the mussel M. edulis was evaluated through measurements of a suite of biomarkers related to: oxidative stress (catalase, malondialdehyde), detoxication (benzopyrene hydroxylase, carboxylesterase), neurotoxicity (acetylcholinesterase), reproductive cycle (vitelline, condition index, maturation stages), immunotoxicity (hemocyte concentration, granulocyte percentage, phagocytosis, reactive oxygen species production, oxidative burst), and general physiological stress (lysosomal stability). A selection of relevant organic contaminant (pesticides, (polycyclic aromatic hydrocarbons, polychlorobiphenyls) was measured as well as environmental parameters (water temperature, salinity, total suspended solids, turbidity, chlorophyll a, pheopigments) and mussel phycotoxin contamination. Two locations differently exposed to the plume of the Vilaine River were compared. Both temporal and inter-site variations of these biomarkers were studied. Our results show that reproduction cycle and environmental parameters such as temperature, organic ontaminants, and algal blooms could strongly influence the biomarker responses. These observations highlight the necessity to conduct integrated environmental approaches in order to better understand the causes of biomarker variations.  相似文献   

13.
One-month old horsegram (Macrotyloma uniflorum (Lam.) Verdc. cv VZM1) and bengalgram (Cicer arietinum L. cv Annogiri) were exposed to different regimes of lead stress as Pb(NO3)2 at 0, 200, 500 and 800 ppm concentrations. The extent of oxidative damage as the rate of lipid peroxidation, antioxidative response and the accumulation of lead in roots and shoots of both plants were evaluated after 12 days of lead stress. Lead (Pb) treated plants showed increased levels of lipid peroxidation as evidenced from the increased malondialdehyde content coupled with the increase in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione S-transferase (GST) compared to control (untreated) plants. Lead stress caused significant changes in the activity of antioxidative enzymes. The effect of lead was found to be concentration dependent. Higher concentration of lead (800 ppm) resulted 2- to 3-fold increase in SOD, catalase and peroxidase activities, 3- to 5-fold increase in GR activity and 3- to 4-fold increase in GST activity in roots and leaves of both horsegram and bengalgram plants. Lead stress caused a significant increase in the rate of peroxidation as showed in the levels of malondialdehyde content in roots and leaves of both plant species. Horsegram registered lower Pb accumulation than bengalgram, however localization of Pb was greater in roots than leaves in both plants. In general, lipid peroxide levels and antioxidative enzyme activities were higher in horsegram than bengalgram and also more in roots than leaves which best concordance with the lead contents of both the plants and organs. These results suggest that Pb toxicity causes oxidative stress in plants and the antioxidative enzymes SOD, CAT, POD, GR, GST could play a pivotal role against oxidative injury.  相似文献   

14.
Concentrations of cadmium, copper, lead and zinc were measured in hair, kidney, liver, lung and muscle tissue of wood mice captured along a pollution gradient. We found positive relationships between cadmium concentrations in hair and all internal tissues. Hair lead concentrations were positively correlated with lead contents in kidney and liver. Age had a significant effect on cadmium accumulation in all tissues and hair. Apart from a very weak relationship between zinc concentrations in hair and liver, no significant relation between copper or zinc content in hair and any of the internal organs was observed. In summary, our observations suggest that hair of wood mice can be used for monitoring exposure to non-essential metals like cadmium and lead, but not to homeostatically regulated metals such as copper or zinc.  相似文献   

15.
Metal concentrations in seabirds of the New Zealand region   总被引:4,自引:0,他引:4  
Concentrations of the heavy metals cadmium, copper, lead, zinc, mercury and, in some individuals, methyl mercury were determined in a range of tissues of 64 tropical, subtropical, subantarctic and antarctic seabird taxa mostly from the New Zealand region. Although apparently natural, levels of cadmium and mercury in some species greatly exceed those known to have toxic effects in some terrestrial birds. Copper and zinc levels exhibited less inter-species variation than the non-essential metals cadmium and mercury. Cadmium concentrations were highest in kidney tissues but uniformly low in feathers. Total mercury concentrations showed most inter-species variation. Mean methyl mercury levels in liver tissues of several large procellariiforms represented less than 5% of the corresponding mean total mercury level. Lead concentrations were generally low or below the limits of detection, but elevated levels were measured in some coastal or scavenging species. In a significant number of species, mean concentrations of liver cadmium and mercury and kidney cadmium were greater in adults than in young birds. The reverse was true for copper. Mean zinc levels in liver did not differ between adults and young. High levels of cadmium in some species seem likely to be due to diet, whereas high levels of mercury probably reflect more closely the moult intervals which constrain the ability of birds to eliminate methyl mercury.  相似文献   

16.
Mining effluents are a potential source of toxic metals in the surrounding aquatic ecosystem and pose a potential health risk to humans from fish consumption. The objective of this paper is to assess the impact of the long-term Dabaoshan mining operation on heavy metal accumulation in different fish species. Heavy metal accumulation (lead (Pb), cadmium (Cd), zinc (Zn), and copper (Cu)) in four tissues (liver, muscle, intestine, and gills) of five carp species (Hypophthalmichthys molitrix, Ctenopharyngodon idellus, Megalobrama amblycephala, Aristichthys nobilis, and Carassius auratus auratus) from two fishponds exposed to effluent waters from Dabaoshan mine, South China. The bioaccumulation factor (BAF) and target hazard quotients were calculated to assess potential health risks to local residents through fish consumption. Levels of heavy metals varied depending on the analyzed tissues. C. auratus auratus accumulated the higher Pb, Cd, Zn, and Cu in the intestine compared with other fish species. Liver of all five species contained high concentrations of Pb, Cd, Zn, and Cu. The BAF for the studied metals showed a descending order of Cd?>?Zn?>?Cu?>?Pb for fishpond 1 and Zn?>?Cd?>?Cu?>?Pb for fishpond 2. Risk assessments suggested that potential human health risk may be present due to high Pb and Cd concentration in the muscle of some fish species exceeding the national and international limits, although the target hazard quotients were less than one.  相似文献   

17.
The effects of ten generational zinc or cadmium pre-exposure on metal tolerance among beet armyworm Spodoptera exigua individuals were compared. These effects were assessed in animals from the 11th generation, reared on a diet either uncontaminated or contaminated with metal (cadmium or zinc). The survival rate of larvae and the degree of metal accumulation (in larvae, pupae and moths; among larval organs: gut and fat body) were analysed. Catalase, superoxide dismutase and glutathione transferase activity in larval organs of individuals subjected to different metal treatments were also measured. Animals transferred from control rearing to metals (cadmium or zinc) in the 11th generation, as well as those from multigenerational zinc treatment, but not from multigenerational cadmium treatment, had a significantly lower survival rate than control animals. Insects from the groups with the high metal treatment had high bioaccumulation factors (above 3.7 and 2.3 following cadmium and zinc, respectively). Cadmium (but not zinc) pre-exposure had a significant effect on metal accumulation in larvae. Multigenerational metal pre-exposure seemed to have mainly a negative effect on glutathione transferase activity in the gut of larvae from the 11th generation, in the case of the individuals exposed to metal other than that used in pre-exposure treatment or kept in control conditions. However, in the case of zinc pre-exposure, such effect was only apparent when zinc was replaced by cadmium. The long-term effect of cadmium on catalase activity in larvae was found.  相似文献   

18.
Nephrops norvegicus were exposed simultaneously to cadmium, copper and zinc over an 18-day period. Exposure concentrations were control, 1, 5 and 25 microg litre(-1) for cadmium and copper and 8, 40 and 200 microg litre(-1) for zinc. Concentrations of cadmium, copper, zinc and metallothionein were measured in homogenates of both the gill and the hepatopancreas. Quantification of metallothionein was carried out by differential pulse polarography. Cadmium concentrations increased significantly in the gill and hepatopancreas of both male and female animals in response to increases in exposure concentration. In contrast, the concentration of copper and zinc increased significantly in the gills of males, but not in females. In the hepatopancreas, neither copper nor zinc resulted in significant changes in concentrations of these metals. Metallothionein concentrations in the gill and hepatopancreas were increased significantly in relation to metal exposure in both males and females. Concentrations of cadmium and metallothionein in both the gill and hepatopancreas of males and females were positively correlated. Copper in the hepatopancreas also showed positive relationships with MT concentrations in males, but not in females. This study suggested that cadmium MTs in the gill and hepatopancreas of Nephrops norvegicus could be used as a sensitive tool to detect cadmium contamination in the lobsters, although this was not true for copper and zinc.  相似文献   

19.

Background

Contamination with heavy metals is among the most hazardous environmental concerns caused by mining activity. A valuable tool for monitoring these effects is the use of sentinel organisms. Particularly, small mammals living inside mine tailings are an excellent study system because their analysis represents a realistic approach of mixtures and concentrations of metal exposure.

Purpose

We analyzed metal tissue concentrations and DNA damage levels for comparison between genders of a sentinel (Peromyscus melanophrys) and a nonsentinel (Baiomys musculus) species. Also, the relationship between DNA damage and the distance from the contamination source was evaluated.

Methods

This study was conducted in an abandoned mine tailing at Morelos, Mexico. Thirty-six individuals from both species at the exposed and reference sites were sampled. Metal concentrations in bone and liver of both species were analyzed by atomic absorption spectrophotometry, and DNA damage levels were assayed using the alkaline comet assay.

Results

In general, concentrations of zinc, nickel, iron, and manganese were statistically higher in exposed individuals. A significant effect of the organ and the site on all metal tissue concentrations was detected. Significant DNA damage levels were registered in the exposed group, being higher in B. musculus. Females registered higher DNA damage levels than males. A negative relationship between distance from the mine tailing and DNA damage in B. musculus was observed.

Conclusions

We consider that B. musculus is a suitable species to assess environmental quality, especially for bioaccumulable pollutants??such as metals??and recommend that it may be considered as a sentinel species.  相似文献   

20.
Larvae of two Baetis species were used to investigate spatial and temporal variability in the bioavailabilities of cadmium, copper, lead, zinc and iron in the river Biala Przemsza and its tributaries draining an area of lead and zinc mining in Upper Silesia, Poland. Accumulated metal concentrations were measured in April, May, August and November 2000. Both species indicated significant local geographical variability in availabilities of zinc, iron, lead and cadmium, but not copper. Accumulated concentrations of lead, zinc and cadmium confirmed the high general contamination of the Biala Przemsza system by these three trace metals. Larvae showed little seasonal variation in concentrations of cadmium, copper, lead and iron. Accumulated zinc concentrations were low in Baetis rhodani in August, perhaps as a result of insufficient time for high concentrations to accumulate since hatching of the larvae. Samples collected in August most nearly matched criteria of the greatest availability of larvae for collection and their size homogeneity, minimising the possibilities of any effect of differential larval size and/or age on accumulated metal concentrations. Mayfly larvae are members of a suite of potential stream biomonitors in Central Europe, which together can provide information on the different sources of bioavailable trace metals present in aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号