首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Over the last 20 years, climate change has become an increasing concern for scientists, public opinions and policy makers. Due to the pervasive nature of its impacts for many important aspects of human life, climate change is likely to influence and be influenced by the most diverse policy or management choices. This is particularly true for those interventions affecting agriculture and forestry: they are strongly dependent on climate phenomena, but also contribute to climate evolution being sources of and sinks for greenhouse gases (GHG). This paper offers a survey of the existing literature assessing cost-effectiveness and efficiency of greenhouse gas mitigation strategies or the effects of broader economic reforms in the agricultural and forestry sectors. The focus is mainly on European countries. Different methodological approaches, research questions addressed and results are examined. The main findings are that agriculture can potentially provide emissions reduction at a competitive cost, mainly with methane abatement, while carbon sequestration seems more cost-effective with appropriate forest management measures. Afforestation, cropland management and bioenergy are less economically viable measures due to competition with other land use. Mitigation policies should be carefully designed either to balance costs with expected benefits in terms of social welfare. Regional variability is one of the main drawbacks to fully assess the cost-effectiveness of different measures. Integration of models to take into account both social welfare and spatial heterogeneity seems to be the frontier of the next model generation.  相似文献   

2.
Adequate monitoring of carbon sequestered by forestry activities is essential to the future of forestry as a climate change mitigation option. A wide range of approaches has been taken to monitor changes in forest carbon attributable to project activities. This paper describes simple, least-cost/least-precision methods, remote sensing, periodic carbon inventories, and traditional research methods. Periodic carbon inventories are the preferred approach because they are cost-effective, provide measurements with known levels of precision, and allow the monitoring of other values such as biodiversity and commercial timber volumes. Verification of monitoring estimates is discussed as an auditing process designed to evaluate reported carbon sequestration values. The limitations of remote sensing for biomass determination and the potential for changes in monitoring approaches due to improvements in technology are briefly reviewed.  相似文献   

3.
气候变化给全球社会经济发展带来了重大影响,林业碳汇在适应和减缓气候变化、促进可持续发展三方面的重要作用日益被世界各国所认可。林业碳汇项目实施的难点在于准确掌握林业碳汇项目设计的规则、标准体系,重点在于基准线判别、碳汇计量、监测的方法学和工具。本文系统介绍了国际清洁发展机制造林再造林(CDM A/R)项目方法学和国内碳汇造林项目方法学、标准体系等最新成果,并以贵州省贞丰县林业碳汇项目为例,分析了基准线和监测方法学在林业碳汇项目开发设计中的实际应用。  相似文献   

4.
Full accounting of the greenhouse gas budget in the forestry of China   总被引:1,自引:0,他引:1  
Forest management to increase carbon (C) sinks and reduce C emissions and forest resource utilization to store C and substitute for fossil fuel have been identified as attractive mitigation strategies. However, the greenhouse gas (GHG) budget of carbon pools and sinks in China are not fully understood, and the forestry net C sink must be determined. The objective of this study was to analyze potential forest management mitigation strategies by evaluating the GHG emissions from forest management and resource utilization and clarify the forestry net C sink, and its driving factors in China via constructing C accounting and net mitigation of forestry methodology. The results indicated that the GHG emissions under forest management and resource utilization were 17.7 Tg Ce/year and offset 8.5% of biomass and products C sink and GHG mitigation from substitution effects from 2000 to 2014, resulting in a net C sink of 189.8 Tg Ce/year. Forest resource utilization contributed the most to the national forestry GHG emissions, whereas the main driving factor underlying regional GHG emissions varied. Afforestation dominated the GHG emissions in the southwest and northwest, whereas resource utilization contributed the most to GHG emissions in the north, northeast, east, and south. Furthermore, decreased wood production, improved product use efficiency, and forests developed for bioenergy represented important mitigation strategies and should be targeted implementation in different regions. Our study provided a forestry C accounting in China and indicated that simulations of these activities could provide novel insights for mitigation strategies and have implications for forest management in other countries.  相似文献   

5.
In this paper, forest protection, short- and long-rotation plantations, forestregeneration, agroforestry and other activities for carbon (C) sequestration wereevaluated. China may be divided into five sub-regions, of which three fallin the main forested areas of China, i.e., the northeast, the southeast andthe southwest regions. The forestry mitigation potential in these threeregions is the subject of this paper. The Comprehensive Mitigation AssessmentProcess (COMAP) model is used to calculatethe potential for carbon mitigation and the cost-effectiveness of eachmitigation option, assuming that 60 percent of the goals of long-termforestry plans of the Chinese government could be realized. The resultsshow that the total sequestered C by the mitigation scenario between2000 and 2030 for the three regions of China will be 2093 × 106 Mg C, ofwhich 281 × 106 Mg C will occur between 2008 and 2012. The total netbiomass sequestration (difference of mitigation and baseline scenarios) from2000 to 2030 and from 2008 to 2012 is 496 × 106 Mg C and 59 × 106 Mg Crespectively. The C sequestration potential could be higher if othertwo regions are included since the forest area of the two regions amount to26.5% of total forested area, in particular, the land area suitable forforestation in the northwest accounts for 45% of the total. The activitywith least investment cost per unit of C is forest regeneration, followedby long-rotation plantation and forest conservation. The mostinvestment-intensive activity is bioenergy. The total investment for all themitigation activities is US $12.7 billion. The above figures between2008–2012 provide an upper bound on the potential for early startprojects that might be eligible for the Clean Development Mechanism(CDM). The authors would like to note that the mitigation potential andcost-effectiveness of agroforestry and bioenergy projects need to be furtherstudied.  相似文献   

6.
Soil organic carbon sequestration rates over 20 years based on the Intergovernmental Panel for Climate Change (IPCC) methodology were combined with local economic data to determine the potential for soil C sequestration in wheat-based production systems on the Indo-Gangetic Plain (IGP). The C sequestration potential of rice-wheat systems of India on conversion to no-tillage is estimated to be 44.1 Mt C over 20 years. Implementing no-tillage practices in maize-wheat and cotton-wheat production systems would yield an additional 6.6 Mt C. This offset is equivalent to 9.6% of India's annual greenhouse gas emissions (519 Mt C) from all sectors (excluding land use change and forestry), or less than one percent per annum. The economic analysis was summarized as carbon supply curves expressing the total additional C accumulated over 20 year for a price per tonne of carbon sequestered ranging from zero to USD 200. At a carbon price of USD 25 Mg C−1, 3 Mt C (7% of the soil C sequestration potential) could be sequestered over 20 years through the implementation of no-till cropping practices in rice-wheat systems of the Indian States of the IGP, increasing to 7.3 Mt C (17% of the soil C sequestration potential) at USD 50 Mg C−1. Maximum levels of sequestration could be attained with carbon prices approaching USD 200 Mg C−1 for the States of Bihar and Punjab. At this carbon price, a total of 34.7 Mt C (79% of the estimated C sequestration potential) could be sequestered over 20 years across the rice-wheat region of India, with Uttar Pradesh contributing 13.9 Mt C.  相似文献   

7.
准确评估中国森林碳汇潜力与增汇成本的经济可行性,是科学制定碳中和林业行动方案的基础。然而针对中国森林碳汇潜力与增汇成本的不同结果差异明显,可靠性需要进一步验证。为此,基于相关文献,采用Meta分析方法,对中国森林碳汇潜力与增汇成本及其导致差异的原因展开评估。研究表明:(1)中国森林碳汇量呈现不断增长的态势,但不同研究对森林碳汇潜力测度结果存在较大差异。(2)中国森林增汇的平均成本为220.45元/t CO2e(区间值为3.9~1457.02元/t CO2e),与工业减排成本相比,中国森林增汇更具有经济可行性,但波动幅度较大。(3)评估方法采用、碳库数量选择等因素是导致已有森林碳汇潜力文献估计结果差异的关键因素;森林增汇成本差异则主要受碳汇成本测度研究方法、成本收益数据来源等因素影响。(4)中国森林增汇对碳中和的贡献将会持续增加。基于研究结果,提出进一步深化森林碳汇潜力与成本测算相关研究等方面的政策建议。  相似文献   

8.
Including the forestry sector as a mitigation option is critical to successful implementation of the United Nations Framework Convention on Climate Change. Since emissions trading and other related economic instruments are likely to be used to meet the treaty's goals, integrating carbon credits from the forestry sector in an emissions trading system and into the Clean Development Mechanism and Joint Implementation is necessary if the GHG mitigation potential of the forestry sector is to be fully realized.Some of the concepts presented in this paper build on a discussion paper prepared for the Australian Greenhouse Challenge Office, preparatory to a sinks workbook. The sinks workbook is designed to help Australian companies measure carbon sequestration from projects undertaken to fulfill their pledges as part of the Australian government's voluntary Greenhouse Challenge initiative. The ideas presented in the original discussion paper (as well as in this paper) were intended to stimulate discussion and do not necessarily reflect the position of the Australian government.This paper outlines some of the methodological questions raised in determining how to generate credits from forestry projects in the context of the Clean Development Mechanism, Joint Implementation and national emissions trading programs. These include baseline determination, which carbon pools to count, leakage issues, carbon accounting methods and the fate of wood products.  相似文献   

9.
Sathaye  J.A.  Makundi  W.R.  Andrasko  K.  Boer  R.  Ravindranath  N.H.  Sudha  P.  Rao  S.  Lasco  R.  Pulhin  F.  Masera  O.  Ceron  A.  Ordonez  J.  Deying  X.  Zhang  X.  Zuomin  S. 《Mitigation and Adaptation Strategies for Global Change》2001,6(3-4):185-211
This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach – Comprehensive Mitigation Assessment Process (COMAP) – to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigation potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200× 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.  相似文献   

10.
The forestry sector is being increasingly considered for abatement of greenhouse gases. A number of projects are likely to be implemented, particularly in tropical countries. It is essential to measure, record, and verify the carbon sequestered or emission avoided due to implementation of the forestry mitigation options. In this paper a set required parameters to be monitored for estimating carbon flows, monitoring methods, and institutional arrangements are presented along with a case study of the Western Ghat Forestry and Environment project. Monitoring carbon flows in forestry sector projects is different due to a long gestation period and location- or site-specific variations in various parameters, particularly rates of C sequestration and emission. Parameters to be monitored include C sequestration in vegetation and soil, rates of wood extraction, wood use related emission, litter, production, decomposition from litter, and soil. Methods include field vegetation monitoring, soil study, houschold and industry surveys, and laboratory investigation. Investigations, analysis, and report writing should be carried out using local educational institutions, NGOs, and consultaney firms. Verification could be taken care of by external agencies. Case studies of the Western Ghat Forestry and Environment project showed that less than 10% of the project budget may be adequate for intensive monitoring of carbon flows. The parameters to be monitored and methods required for any forestry mitigation project is nearly identical to that of any typical forest conservation or reforestation project.  相似文献   

11.
Mitigation and adaptation synergy in forest sector   总被引:1,自引:1,他引:1  
Mitigation and adaptation are the two main strategies to address climate change. Mitigation and adaptation have been considered separately in the global negotiations as well as literature. There is a realization on the need to explore and promote synergy between mitigation and adaptation while addressing climate change. In this paper, an attempt is made to explore the synergy between mitigation and adaptation by considering forest sector, which on the one hand is projected to be adversely impacted under the projected climate change scenarios and on the other provide opportunities to mitigate climate change. Thus, the potential and need for incorporating adaptation strategies and practices in mitigation projects is presented with a few examples. Firstly, there is a need to ensure that mitigation programs or projects do not increase the vulnerability of forest ecosystems and plantations. Secondly, several adaptation practices could be incorporated into mitigation projects to reduce vulnerability. Further, many of the mitigation projects indeed reduce vulnerability and promote adaptation, for example; forest and biodiversity conservation, protected area management and sustainable forestry. Also, many adaptation options such as urban forestry, soil and water conservation and drought resistant varieties also contribute to mitigation of climate change. Thus, there is need for research and field demonstration of synergy between mitigation and adaptation, so that the cost of addressing climate change impacts can be reduced and co-benefits increased.  相似文献   

12.
Managing forests to increase carbon sequestration or reduce carbon emissions and using wood products and bioenergy to store carbon and substitute for other emission-intensive products and fossil fuel energy have been considered effective ways to tackle climate change in many countries and regions. The objective of this study is to examine the climate change mitigation potential of the forest sector by developing and assessing potential mitigation strategies and portfolios with various goals in British Columbia (BC), Canada. From a systems perspective, mitigation potentials of five individual strategies and their combinations were examined with regionally differentiated implementations of changes. We also calculated cost curves for the strategies and explored socio-economic impacts using an input-output model. Our results showed a wide range of mitigation potentials and that both the magnitude and the timing of mitigation varied across strategies. The greatest mitigation potential was achieved by improving the harvest utilization, shifting the commodity mix to longer-lived wood products, and using harvest residues for bioenergy. The highest cumulative mitigation of 421 MtCO2e for BC was estimated when employing the strategy portfolio that maximized domestic mitigation during 2017–2050, and this would contribute 35% of BC’s greenhouse gas emission reduction target by 2050 at less than $100/tCO2e and provide additional socio-economic benefits. This case study demonstrated the application of an integrated systems approach that tracks carbon stock changes and emissions in forest ecosystems, harvested wood products (HWPs), and the avoidance of emissions through the use of HWPs and is therefore applicable to other countries and regions.  相似文献   

13.
A sustainable forestry scenario aimed at meeting the projected biomassdemands, halting deforestation and regenerating degraded forests wasdeveloped and analyzed for additionality of mitigation and cost-effectivenessfor India. Similarly, mitigation potential of a commercial forestry scenarioaimed at meeting the biomass demands from forestry activities on privateland was assessed. India has a significant scale baseline scenario afforestationand effective forest conservation activities. India is afforesting at an averagegross rate of 1.55 × 106 ha yr-1 over the past 10 years, while the gross deforestation rate was 0.272 × 106 ha yr-1 during the same period. The sustainable forestry scenario could lead to an additional carbon (C) stock of 237 × 106 Mg C during 2000 to 2012, while the commercial forestry scenario apart from meeting all the incremental biomass demands (estimated for 2000 to 2015) could potentially lead to an additional carbon stock of 78 × 106Mg C during 2000 to 2012. Short- and Long-rotation forestry activities arecommercially viable. With appropriate policies and financial incentives allthe industrial wood, sawnwood and commercial fuelwood requirementcould be met through commercial forestry, so that government funds couldbe dedicated for conserving state owned forests and meeting subsistencebiomass demands. The commercial forestry activities could receive financialsupport under greenhouse gas (GHG) abatement programmes. The government, however, needs to develop institutions and guidelines to process, evaluate, approve and monitor forestry sector mitigation projects.  相似文献   

14.
The role of forestry projects in carbon conservation and sequestration is receiving much attention because of their role in the mitigation of climate change. The main objective of the study is to analyze the potential of the Upper Magat Watershed for a carbon sequestration project. The three main development components of the project are forest conservation: tree plantations, and agroforestry farm development. At Year 30, the watershed can attain a net carbon benefit of 19.5 M tC at a cost of US$ 34.5 M. The potential leakage of the project is estimated using historical experience in technology adoption in watershed areas in the Philippines and a high adoption rate. Two leakage scenarios were used: baseline and project leakage scenarios. Most of the leakage occurs in the first 10 years of the project as displacement of livelihood occurs during this time. The carbon lost via leakage is estimated to be 3.7 M tC in the historical adoption scenario, and 8.1 M tC under the enhanced adoption scenario.  相似文献   

15.
不同的林业补贴产生不同的效果:可能提高社会福利,也可能降低社会福利。出现这种差别的原因是补贴使林业生产收益流发生了变化,从而使得林业生产收益最大净现值到来的时间相对于社会最优时间提前或延后。论文建立了一个以林木吸收碳来衡量森林生态效益的林业生产收益定量模型,并通过该模型对华东某市的一项林场补贴政策进行分析。分析结果是,在没有补贴的情况下,该林场最优砍伐时间为第19年,当存在补贴的情况下,林场的最优砍伐时间提前到第11年,而随着碳价格从0增加至1000元/t,社会最优砍伐时间从第19年增加到第31年,造成的社会净损失从7750元/hm2增加到17704元/hm2。鉴于此,合理的林业补贴要能够促使私人效益与社会效益相统一。  相似文献   

16.
Accurate assessment of the cost of carbon sequestration is important for the development of mitigation policies globally. Given that sequestration in soils or vegetation is a lengthy process, such assessment requires financial discounting and making realistic assumptions about changes over time in the rate of sequestration, the price of carbon, and the opportunity cost incurred by adopting sequestration practices. Our objective is to demonstrate how these assumptions affect estimates of the cost of sequestration-based mitigation strategies. Using an Australian case study of soil carbon sequestration, our estimates of the carbon price required for financial viability are highly sensitive to dynamic assumptions, varying by a factor of four with different assumptions. Yet the influence of these time-related assumptions is poorly acknowledged in the literature, with many studies either failing to disclose their assumptions, or employing questionable assumptions and methods. Recommended global strategies are for researchers to report their assumptions related to dynamics much more transparently and to improve their research methods and the realism of their assumptions when analysing the economics of carbon sequestration. We recommend that policymakers become better aware of the issues created by dynamics, so that they are able to validly interpret assessments of the cost of sequestration and to ensure that they design policies in a way that facilitates fair comparison of the costs of mitigation strategies that operate over different timescales.  相似文献   

17.
Agriculture is one of the major sources of greenhouse gas (GHG) emission. It accounts for approximately 15% of the total global anthropogenic emissions of GHGs. Emissions could be twice as much if indirect emissions are also taken into the consideration. However, unlike other high emitting sectors such as transport or energy, agriculture is potentially a significant carbon “sink”. It has high technical potential as a carbon sink and if tapped, can substantially enhance global sequestration efforts. The technical potential, however, may not translate into actual GHG reduction because of the capital assets and institutional constraints faced by the smallholder farmers in the developing countries. In this paper we develop a capital assets based framework of physical, financial, social, human and natural barriers to agricultural carbon mitigation initiatives and through analysis of current initiatives, we set out policy based options to reduce each of these barriers. Fundamentally, barrier removal will entail designing agricultural carbon mitigation initiatives in collaboration with farmer communities, through strengthening local institutions, understanding land tenure and natural resource cultures, ensuring legitimacy and equity in payments and fast tracking training and information. We provide a framework that simultaneously aids the dual objectives of alleviating poverty in the poor farming communities of developing countries and lowering global greenhouse gas emissions.  相似文献   

18.
The objectives of this research are to assess the greenhouse gas mitigation potential of carbon policies applied to the ruminant livestock sector [inclusive of the major ruminant species—cattle (Bos Taurus and Bos indicus), sheep (Ovis aries), and goats (Capra hircus)]—with particular emphasis on understanding the adjustment challenges posed by such policies. We show that market-based mitigation policies can greatly amplify the mitigation potential identified in marginal abatement cost studies by harnessing powerful market forces such as product substitution and trade. We estimate that a carbon tax of US$20 per metric ton of carbon dioxide (CO2) equivalent emissions could mitigate 626 metric megatons of CO2 equivalent ruminant emissions per year (MtCO2-eq year?1). This policy would also incentivize a restructuring of cattle production, increasing the share of cattle meat coming from the multiproduct dairy sector compared to more emission intensive, single purpose beef sector. The mitigation potential from this simple policy represents an upper bound because it causes ruminant-based food production to fall and is therefore likely to be politically unpopular. In the spirit of the Paris Agreement (UNFCCC 2015), which expresses the ambition of reducing agricultural emissions while protecting food production, we assess a carbon policy that applies both a carbon tax and a subsidy to producers to manage the tradeoff between food production and mitigation. The policy maintains ruminant production and consumption levels in all regions, but for a much lower global emission reduction of 185 MtCO2-eq year?1. This research provides policymakers with a quantitative basis for designing policies that attempt to trade off mitigation effectiveness with producer and consumer welfare.  相似文献   

19.
This two-part paper considers the complementarity between adaptation and mitigation in managing the risks associated with the enhanced greenhouse effect. Part one reviews the application of risk management methods to climate change assessments. Formal investigations of the enhanced greenhouse effect have produced three generations of risk assessment. The first led to the United Nations Intergovernmental Panel on Climate Change (IPCC), First Assessment Report and subsequent drafting of the United Nations Framework Convention on Climate Change. The second investigated the impacts of unmitigated climate change in the Second and Third IPCC Assessment Reports. The third generation, currently underway, is investigating how risk management options can be prioritised and implemented. Mitigation and adaptation have two main areas of complementarity. Firstly, they each manage different components of future climate-related risk. Mitigation reduces the number and magnitude of potential climate hazards, reducing the most severe changes first. Adaptation increases the ability to cope with climate hazards by reducing system sensitivity or by reducing the consequent level of harm. Secondly, they manage risks at different extremes of the potential range of future climate change. Adaptation works best with changes of lesser magnitude at the lower end of the potential range. Where there is sufficient adaptive capacity, adaptation improves the ability of a system to cope with increasingly larger changes over time. By moving from uncontrolled emissions towards stabilisation of greenhouse gases in the atmosphere, mitigation limits the upper part of the range. Different activities have various blends of adaptive and mitigative capacity. In some cases, high sensitivity and low adaptive capacity may lead to large residual climate risks; in other cases, a large adaptive capacity may mean that residual risks are small or non-existent. Mitigative and adaptive capacity do not share the same scale: adaptive capacity is expressed locally, whereas mitigative capacity is different for each activity and location but needs to be aggregated at the global scale to properly assess its potential benefits in reducing climate hazards. This can be seen as a demand for mitigation, which can be exercised at the local scale through exercising mitigative capacity. Part two of the paper deals with the situation where regional bodies aim to maximise the benefits of managing climate risks by integrating adaptation and mitigation measures at their various scales of operation. In north central Victoria, Australia, adaptation and mitigation are being jointly managed by a greenhouse consortium and a catchment management authority. Several related studies investigating large-scale revegetation are used to show how climate change impacts and sequestration measures affect soil, salt and carbon fluxes in the landscape. These studies show that trade-offs between these interactions will have to be carefully managed to maximise their relative benefits. The paper concludes that when managing climate change risks, there are many instances where adaptation and mitigation can be integrated at the operational level. However, significant gaps between our understanding of the benefits of adaptation and mitigation between local and global scales remain. Some of these may be addressed by matching demands for mitigation (for activities and locations where adaptive capacity will be exceeded) with the ability to supply that demand through localised mitigative capacity by means of globally integrated mechanisms.  相似文献   

20.
Carbon (C) conservation and sequestration in many developing countries needs to be accompanied by socio-economic improvements. Tree crop plantations can be a potential path for coupling climate change mitigation and economic development by providing C sequestration and supplying wood and non-wood products to meet domestic and international market requirements at the same time. Financial compensation for such plantations could potentially be covered by the Clean Development Mechanism under the United Nations Framework Convention on Climate Change (FCCC) Kyoto Protocol, but its suitability has also been suggested for integration into REDD?+?(reducing emissions from deforestation, forest degradation and enhancement of forest C stocks) currently being negotiated under the United Nations FCCC. We assess the aboveground C sequestration potential of four major plantation crops – cocoa (Theobroma cacao), oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and orange (Citrus sinesis) – cultivated in the tropics. Measurements were conducted in Ghana and allometric equations were applied to estimate biomass. The largest C potential was found in the rubber plantations (214 tC/ha). Cocoa (65 tC/ha) and orange (76 tC/ha) plantations have a much lower C content, and oil palm (45 tC/ha) has the lowest C potential, assuming that the yield is not used as biofuel. There is considerable C sequestration potential in plantations if they are established on land with modest C content such as degraded forest or agricultural land, and not on land with old-growth forest. We also show that simple C assessment methods can give reliable results, which makes it easier for developing countries to partake in REDD?+ or other payment schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号